УЧЕНИЕ ОБ ИММУНИТЕТЕ И ФАКТОРЫ НЕСПЕЦИФИЧЕСКОЙ РЕЗИСТЕНТНОСТИ

ГЛАВА 9. УЧЕНИЕ ОБ ИММУНИТЕТЕ И ФАКТОРЫ НЕСПЕЦИФИЧЕСКОЙ РЕЗИСТЕНТНОСТИ

9.1. Введение в иммунологию

Организм каждого человека окружает и вмес­те с ним сосуществует в тех или иных взаимных отношениях не только мир микробов и другие представители живой природы (насекомые, червеобразные, земноводные, пресмыкающи­еся, рыбы, млекопитающие, растения), но и огромное число макромолекул, обладающих биологически активным воздействием на орга­низм. Эти макромолекулы, к которым относят­ся белки, полисахариды, липиды, нуклеиновые кислоты и их комплексы, имеют как природ­ное происхождение, т. е. являются продуктами жизнедеятельности или распада представите­лей животного и растительного мира, так и искусственно синтезированые человеком, пос­кольку они необходимы для обеспечения его жизнедеятельности (лекарственные препараты, пищевые белки, ферменты, сахара и пр.).

Биологически активные вещества, макро­молекулы, попадая в организм, могут вмеши­ваться в биологические процессы и нарушать их. Поскольку многочисленные биологичес­ки активные макромолекулы являются чу­жеродными для организма, они объединены в единую группу, получившую название «ан­тигены». Для защиты от антигенов эволю­ция создала у теплокровных да и у низших представителей живой природы специальную систему противодействия им. Эта система по­лучила название иммунной, а ее функция за­щиты от антигенов именуется иммунитетом.

9.1.1. Сущность и роль иммунитета

Термин «иммунитет» (от лат. immunitasосвобождение от чего-либо, неприкосновен­ность) применялся уже в средние века при освобождении, например, крестьян от податей, а в наше время он нашел употребление у дип­ломатов (дипломатический иммунитет, т. е. неприкосновенность). Биологический смысл термина «иммунитет» очень точно соответс­твует смысловому значению тех процессов, которые направлены на защиту, неприкосно­венность, освобождение организма от биоло­гически активных веществ — антигенов.

Следует подчеркнуть, что антигенами, в первую очередь, могут быть только вещества, генетически чужеродные именно для данно­го организма, т. е. генетически, структурно отличающиеся от биополимеров, входящих в структуры данного организма; далее, они должны представлять собой макромолекулы веществ определенного класса, т. е. белки, по­лисахариды, липиды, нуклеиновые кислоты и их комплексы, которые, несмотря на отличие по своей структуре и другим свойствам от макромолекул данного организма, могут воз­действовать на течение биологических мак-ромолекулярных процессов этого организма и вызывать функциональные и органические нарушения, т. е. изменять гомеостаз — посто­янство внутренней среды организма.

Мир антигенов чрезвычайно разнообразен и многочислен. Антигены могут проникать в организм через дыхательные пути, желудочно-кишечный тракт, кожу и слизистые оболочки (экзогенные антигены) или формироваться в результате мутаций клеток и молекул или других процессов в самом организме (эндо­генные антигены). Для защиты от антигенов эволюция создала сложную систему защиты, получившую название «система иммунитета». Эта система у теплокровных представлена лимфоидной тканью, имеющей присущие ей анатомическое строение, формы и механиз­мы реагирования, специфические, а также физиологические функции.

Основная функция иммунной системы — распознать антиген, т. е. установить его генетическую чужеродность, генетическое отли­чие от собственных антигенов, и комплексом реакций и механизмов, присущих иммунной системе, устранить его влияние на биологи­ческие процессы, протекающие в организме, с целью сохранения гомеостаза, структурной и функциональной целостности организма, а также сохранить специфическую память об этом антигене, иногда на всю жизнь.

Помимо этого иммунная система охраняет и поддерживает антигенную индивидуальность собственных биополимеров организма, пос­кольку каждый человек на планете (кроме од­нояйцовых близнецов) имеет присущие толь­ко ему генетически детерминированные анти­генные особенности биополимеров. В случае возникновения антигенно отличных молекул или клеток (в результате мутационных или па­тологических процессов, например появления клеток злокачественных опухолей) иммунная система распознает их и уничтожает.

Таким же образом биополимеры всех ви­дов животного и растительного мира, в том числе и микробов, генетически отличаются по антигенной структуре, т. е. имеют видовую антигенную особенность.

Следовательно, иммунитет — это способ защиты организма от генетически чужеродных веществ — антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной) индивидуальности каждого организма и вида в целом.

 

9.1.2. Иммунология как общебиологическая и общемедицинская наука

Иммунитет как общебиологическое и об­щемедицинское явление, его функцию в ор­ганизме, анатомические структуры и меха­низмы, осуществляющие иммунитет, изучает специальная наука — иммунология.

Иммунология как наука возникла более 100 лет назад, и по мере ее развития и прогресса (см. разд. 1.3.) менялись взгляды на иммунитет, на его роль в организме, на механизмы иммунных реакций, расширялась сфера практического использования иммунологии, а в соответствии с этим менялось определение иммунологии как науки. Нередко, даже в современной учебной литературе, иммунологию трактуют как науку, которая изучает специфическую невосприимчи­вость к возбудителям инфекционных болезней, разрабатывает способы защиты от антигенов, поддержания гомеостаза и т.д., т.е. не дается всестороннего, всеобъемлющего определения иммунологии исходя из сущности и механизмов иммунитета и его роли в жизнедеятельности организма. На современном этапе развития учения об иммунитете иммунологию можно определить как общебиологическую и общеме­дицинскую науку, которая изучает способы и механизмы защиты организма от генетически чужеродных веществ — антигенов экзогенного и эндогенного происхождения с целью поддержа­ния гомеостаза, структурной и функциональной целостности организма, а также генетически детерминированной антигенной индивидуаль­ности каждого индивидуума и вида в целом.

Такое определение подчеркивает: а) что им­мунология изучает способы и механизмы защиты от любых генетически чужеродных для данного организма антигенов, будут ли они микробного, животного, растительного или другого происхождения; б) что механизмы им­мунитета направлены против антигенов, кото­рые могут проникать в организм, как извне, так и формироваться в самом организме; в) что сис­тема иммунитета направлена на сохранение и поддержание генетически детерминированной антигенной индивидуальности каждой особи, каждого индивидуума, а также вида в целом.

Это определение иммунологии свидетельс­твует также о том, что иммунология как на­ука едина, независимо от того, изучает ли она иммунитет человека, животных или растений. Конечно, анатомо-физиологическая основа, набор механизмов и реакций, а также способов защиты от антигенов у каждых представителей животного и растительного мира будет отли­чаться и варьировать, однако принципиаль­ная сущность иммунитета от этого меняться не будет. В связи с этим в иммунологии можно выделить три направления: медицинская имму­нология (гомоиммунология), зооиммунология и фитоиммунология, изучающие иммунитет со­ответственно у человека, животных и растений.

Таблица 9.1. Классификация медицинской иммунологии

Иммунология
ОбщаяЧастная
Молекулярная

Клеточная

Физиология иммунитета

Иммунохимия

Иммуногенетика

Эволюционная иммунология

Иммунопрофилактика (вакцинология)

Аллергология

Иммуноонкология

Трансплантационная иммунология

Иммунология репродукции

Иммунопатология

Иммунобиотехнология

Иммунофармакология

Экологическая иммунология

Клиническая иммунология

 

Каждое из этих направлений в иммунологии дифференцируется по методам и по объекту изучения, т. е. в них можно выделить общую и частную иммунологию. Классификация меди­цинской иммунологии представлена в табл. 9.1.

Иммунология относится к числу разветв­ленных наук, имеет множество направлений и разделов, сформировавшихся практически в самостоятельные дисциплины, охватыва­ющие как теоретические, фундаментальные, так и профилактические и клинические про­блемы медицины.

Иммунология решает такие важные про­блемы медицины, как диагностика, профи­лактика и лечение инфекционных болезней (иммунопрофилактика или вакцинология), аллергических состояний (аллергология), зло­качественных опухолей (иммуноонкология), болезней, в механизме которых играют роль иммунопатологические процессы (иммуно­патология), иммунные взаимоотношения матери и плода на всех стадиях репродукции (иммунология репродукции); изучает иммунные механизмы и вносит практический вклад в решение проблемы трансплантации органов и тканей (трансплантационная иммунология); можно также выделить иммуногематологию, изучающую иммунные взаимоотношения до­нора и реципиента при переливании крови; иммунофармакологию, изучающую влияние на иммунные процессы лекарственных ве­ществ. Самостоятельным важным разделом, возникшим в результате интеграции иммунологии и биотехнологии, является иммуно-биотехнология, разрабатывающая принципы и методы создания иммунобиологических диагностических, профилактических и ле­чебных препаратов. Наконец, в последние годы выделились клиническая и экологичес­кая иммунология. Клиническая иммунология изучает и разрабатывает проблемы диагнос­тики и лечения болезней, возникающих в результате врожденных (первичных) и приоб­ретенных (вторичных) иммунодефицитов, а экологическая иммунология изучает влияние на иммунную систему всевозможных эколо­гических факторов (климатогеографических, социальных, профессиональных и т. д.).

Практически каждое направление иммуно­логии решает присущие ему задачи на молеку­лярном, клеточном, организменном уровне, т. е. пользуются данными общей иммунологии. Все большее значение по мере развития фундаментальных наук приобретает иммуногенетика, основной целью которой является разработка генодиагностики, генотерапии и генопрофилактики болезней, иммунокардио-логия, изучающая иммунологические аспекты атеросклероза кровеносных сосудов, и другие направления.

Таким образом, иммунология пронизывает буквально все профилактические и клинические дисциплины и решает исключительно важные проблемы медицины, такие как сни­жение частоты и ликвидация инфекционных болезней, диагностика и лечение аллергий, онкологических заболеваний, иммунопатологических состояний, иммунопатология репродукции, пересадка органов и тканей, генодиагностика и генотерапия врожденных и приобретенных иммунодефицитов и т. д.

 

9.1.3. История развития иммунологии

Наблюдения, свидетельствующие о том, что люди повторно не заболевают после того, как перенесли некоторые болезни, были известны с глубокой древности. Такая невосприимчи­вость человека к болезням объяснялась, напри­мер, Гиппократом как «природа (фюзис) орга­низма», «целебные силы» организма, Галеном — как «жизненная сила», Парацельсом — как «залечивающая сила». Термин «иммунитет» как «освобождение от болезней» стал впервые входить в медицинскую литературу с конца XIX в. и закреплен во французском словаре Литтре (1869), хотя и до этого он иногда упот­реблялся в быту, а также в некоторых средне­вековых трактатах по медицине.

Хронологически иммунология как наука прошла два больших периода (Т. И. Ульянкина): период протоиммунологии (от анти­чного периода до 80-х годов XIX в.), связан­ный со стихийным, эмпирическим познани­ем защитных реакций организма, и период зарождения экспериментальной и теорети­ческой иммунологии (с 80-х годов XIX в. до второго десятилетия XX в.). В течение вто­рого периода завершилось формирование классической иммунологии, которая носила в основном характер инфекционной имму­нологии.

Можно также выделить и третий период: начиная с середины XX в. и до наших дней. В этот период быстрыми темпами развива­лась молекулярная и клеточная иммунология, а также иммуногенетика, так что этот этап можно назвать молекулярно-генетическим периодом в развитии иммунологии.

Основоположниками научной иммуноло­гии по праву считаются французский уче­ный-химик Луи Пастер, открывший при­нцип вакцинации, русский ученый-зоолог И. И. Мечников — автор учения о фагоцито­зе и немецкий врач-биохимик Пауль Эрлих, сформулировавший гипотезу об антителах.

Справедливости ради следует отметить, что возможность предохранения от заболевания натуральной оспой путем прививки человеку коровьей оспы открыл более 200 лет назад ан­глийский врач Э. Дженнер, однако это наблю­дение носило чисто эмпирический характер.

Таким образом, на рубеже XIX и XX вв. сфор­мировалась новая наука иммунология, которая в течение XX в. ознаменовалась принципиальны­ми открытиями, сделавшими ее общебиологи­ческой и общемедицинской наукой. Основные открытия в области иммунологии приведены в табл. 9.2. О важности открытий в иммунологии для биологии в целом и особенно для медицины свидетельствует то обстоятельство, что авторы многих из них отмечены Нобелевской премией. Так, лауреатами Нобелевской премии в области иммунологии стали: И. И. Мечников, П. Эрлих, Р. Кох, Э. Беринг, Ж. Борде, К. Ландштейнер, Ш. Рише, Д. Снелл, Н. Ерне, Ф. Бернет, П. Медовар, Р. Портер, Д. Эдельман, Ж. Доссе, У. Мильштейн, Д. Келлер, С. Тонегава, С. Прусинер и др. Основоположник имму­нологии Л. Пастер, который вполне достоин Нобелевской премии, не получил ее, поскольку при его жизни она еще не была учреждена.

Следует отметить, что в XIX в. и первой половине XX в. иммунология успешно раз­вивалась в странах Европы, прежде всего во Франции. В 1888 г. за выдающиеся заслуги Л. Пастера перед человечеством на народные пожертвования был учрежден Институт им­мунологии (ныне Институт Пастера), кото­рый явился научной школой, вокруг которой группировались иммунологи многих стран. Российские ученые активно участвовали в становлении и развитии иммунологии. Более 25 лет И. И. Мечников являлся заместителем директора по науке Института Пастера, т.е. был ближайшим помощником и единомыш­ленником Луи Пастера.

В Пастеровском институте работа­ли многие выдающиеся русские ученые: М. Безредка, Н. Ф. Гамалея, Л. А. Тарасевич, Г. Н. Габричевекий,И. Г. Савченко, С. В. Кор­шун, Д. К. Заболотный, В. А. Барыкин, Н. Я. и Ф.Я. Чистовичи и многие другие. Эти ученые продолжали развивать традиции Пастера и Мечникова в иммунологии и, по существу, создали русскую школу иммунологов.

Таблица 9.2. Важнейшие даты из истории иммунологии

ОткрытиеГодАвторы
Вакцинация людей коровьей оспой1796Э. Дженнер
Фагоцитоз. Клеточный иммунитет1884И. И. Мечников*
Вакцинация против бешенства1885Л. Пастер
Ретикуло-эндотелиальная система и ее роль в иммунитете1886В. К. Высокович
Гиперчувствительность замедленного типа1980Р. Кох*
Хемотаксис лейкоцитов1889-1891Г. Н. Габричевский
Пассивная иммунизация1891Э. Беринг*
Теория боковых цепей1897П. Эрлих*
Комплемент1899Ж. Борде*
Группы крови1900К. Ландштейнер*
Анафилаксия. Гиперчувствительность немедленного типа1902-1905Ш. Рише*, М, Сахаров
Феномен Артюса1903М. Артюс
Сывороточная болезнь. Аллергия1905К. Пирке
Эффект ревакцинации1915М. Райский
Анатокины, адъюванты1923-1930Г. Рамон
Живая вакцина против желтой лихорадки1933-1936М. Тейлер*
Иммунофлюоресценция1942А. Куне
Антиглобулиновый тест1945Р. Кумбс
Иммунодиффузия1946Дж. Уден, Э. Оухтерлони
Система Н-21948Д. Снелл*
Изучение антигенов опухолей1948Л. Зильбер
Интерферон1957А. Айзеке, Ж. Линдеман
Идиотип-антиидиотипическая теория1955-1977Н. Ерне*
Атонально-селекционная теория1958Ф. Бернет*
Иммунологическая толерантность1958П. Медовар*, М. Гашек
Структура иммуноглобулинов1958-1968Р. Портер*, Д. Эдельман*
Система HLA1958Ж. Доссе*
Доказательство роли тимуса как центрального органа

иммунитета

1961Ж. Миллер
Секреторный IgA1963Т. Томази
Обоснование физиологических основ иммунитета1937-1969П. Ф. Здродовский
Гены иммунного ответа1963Б. Бенацерафф
Лимфокины1969Д. Дьюмонд
Моноклональные антитела1975У. Мильштейн*, Д. Келлер*
Межклеточная кооперация1973Б. Бенацерафф, Р. В. Петров
Иммуногенетическая теория образования антител1980С. Тонегава*
Открытие прионов — патогенных белков1997С. Прусинер*
*лауреаты Нобелевской премии.  

 

Российским ученым принадлежат многие выдающиеся открытия в области иммунологии. И. И. Мечников — автор учения о фагоцитозе, B.К. Высокович — одним из первых сформулировал роль ретикулоэндотелиальной системы в иммунитете, Г. Н. Габричевский обосновал явление хемотаксиса лейкоцитов, Н. Я. Чистович стоял у истоков открытия тканевых антигенов, харьковский исследователь М. Райский уже в 1915 г. установил феномен ревакцинации, т. е. иммунологической памяти; М. Сахаров — один из основоположников учения об анафилаксии; академик Л. А. Зильбер — стоял у истоков учения об антигенах опухолей, академик П. Ф. Здродовский обосновал физиологическое направление в иммунологии, академик Р. В. Петров внес весомый вклад в развитие неинфекционной иммунологии и в проблему кооперативного взаимодействия клеток иммунной системы, академик А. А. Воробьев — в учение об адъювантах, неспецифических стимуляторах иммуногенеза.

Российские ученые являются лидерами в раз­работке фундаментальных и прикладных про­блем вакцинологии и иммунопрофилактики в целом. Хорошо известны в нашей стране и за рубежом имена создателей вакцин против ту­ляремии (Б. Я. Эльберт и Н.А. Гайский), си­бирской язвы (Н. Н. Гинзбург), полиомиелита (М. П. Чумаков, А. А. Смородинцев), кори, па­ротита, гриппа (А. А. Смородинцев и сотр.), Ку-лихорадки и сыпного тифа (П. Ф. Здродовский и ученики), полианатоксинов против ране­вых инфекций и ботулизма (А. А. Воробьев, Г. В. Выгодчиков, П. Н. Бургасов и сотр.), ста­филококковых инфекций (Г. В. Выгодчиков и сотр.). Российские ученые много сделали для раз­работки массовых непарентеральных способов вакцинации: аэрозольного (Н.И.Александров, Н. Е. Гефен, В. А. Лебединский и др.), перо-рального (А. М. Безредка, А. Н. Мешалова, А. А. Воробьев и сотр.). Активное участие рос­сийские ученые принимали в разработке страте­гии и тактики иммунопрофилактики, глобаль­ной ликвидации инфекций и снижении заболеваемости инфекционными болезнями; по их инициативе и с их помощью ликвидирована натуральная оспа на земном шаре (В. М. Жданов, C.С. Маренникова, О. Г. Анджапаридзе и др.), успешно ликвидируется полиомиелит (М.П.Чумаков, С.Г.Дроздов и др.), снижена заболеваемость дифтерией, столбняком, корью, коклюшам и др. инфекциями (Г. Г. Онищенко). В России, особенно в бывшем СССР, созданы крупные научные институты, занимающиеся проблемами фундаментальной и прикладной иммунологии: Центр иммунологии Министерства здравоохранения, Институт клинической иммунологии в Новосибирске, Институт прикладной иммунологии в пос. Любучаны Московской области, Институт эпидемиологии и микробиологии им. Н. Ф. Гамалеи, Центральный институт вакцин и сывороток им. И. И. Мечникова, Институт полиомиелита и вирусных энцефалитов им. М. П. Чумакова, Институт вирусологии им. И. И. Ивановского; создана сеть крупных институтов и центров, разрабатывающих проблемы иммунобиотехнологии иммунобиологических препаратов в городах Пермь, Уфа, Томск, Ставрополь, С.-Петербург и в других городах, а также успешно работает система противочумных институтов, занимающихся особо опасными инфекциями.

В нашей стране в 1980 г. создано Всесоюзное общество иммунологов. Первым его президентом стал академик Р. В. Петров. С 1983 г. издается журнал «Иммунология», учреждены также «Русский иммунологический журнал» и журнал «Вакцинология». Проблемы иммунологии освещаются во многих центральных журналах, в частности в «Журнале микроби­ологии, эпидемиологии и иммунобиологии», «Вестнике Российской академии медицинских наук» и др.

Подготовка иммунологов ведется в медицинских вузах, а также в университетах и научно-исследовательских институтах.

9.1.4. Достижения иммунологии в медицине

Иммунология за сравнительно короткий исторический период добилась существенных результатов в снижении и ликвидации бо­лезней человека, сохранении и поддержании здоровья населения нашей планеты.

Значительные успехи достигнуты в области профилактики, диагностики и лечения ин­фекционных болезней:

— благодаря вакцинации ликвидирована натуральная оспа на земном шаре, в ближайшее время будет ликвидирован полиомиелит, снижена до единичных случаев заболевае­мость корью, коклюшем, дифтерией и други­ми инфекциями; в перспективе возможно с помощью вакцинации предотвращение эпи­демий таких грозных заболеваний, как ви­русные парентеральные гепатиты, ВИЧ-ин­фекция; резко снижена заболеваемость стол­бняком, паротитом, туляремией, сибирской язвой, бруцеллезом и другими инфекциями;

  • разработана и внедрена в медицинскую практику иммунодиагностика практически всех инфекционных болезней, в том числе та­ких опасных, как ВИЧ-инфекция, вирусные гепатиты, чума, холера и др.;
  • для лечения многих инфекционных бо­лезней применяются иммуномодуляторы (ин­терферон, пептиды тимуса, интерлейкины, органические и неорганические адъюванты и др.), а также специфические иммуноглобули­ны (особенно при токсинемических инфекциях – ботулизме, столбняке, газовой гангрене).

В области онкологии — установлены ан­тигены опухолей человека и на их основе разработаны способы дифференциальной диагностики опухолей; широко применяются в онкологии для лечения и профилактики в комплексе с другими традиционными спосо­бами иммуномодуляторы (интерлейкины, интерфероны, фактор некроза опухолей и др.), а также адаптогены.

  • В области трансплантологии — благодаря прогрессу в изучении антигенов гистосов-местимости, явлений толерантности и при­менения иммунодепрессантов значительно снижен риск отторжения трансплантатов при пересадках сердца, почек и других органов, а также тканей. В результате установления иммунологичес-ки совместимых групп крови решена пробле­ма переливания крови. Изучение иммунных взаимоотношений между матерью и плодом на всех стадиях репродукции позволило разработать иммуноло­гические методы выявления причин бесплодия, аномалий в развитии плода, заболеваний и осложнений в здоровье ребенка и матери. В частности, решена проблема иммуноло­гической диагностики резус-гемолитической болезни новорожденных.

Установлены причины и иммунные механизмы поражения многих внутренних орга­нов (печени, сердца, легких и др.), что открыло новые возможности для диагностики и лечения таких поражений.

Установлен комплекс параметров, характеризующих состояние иммунной системы (иммунный статус), в результате чего стало возможным выявление врожденных и приоб­ретенных иммунодефицитов; влияние на им­мунную систему экологических, социальных, профессиональных и других факторов послу­жило основанием для разработки патогномо-ничной иммунотерапии многих болезней.

Значительный прогресс достигнут в выявлении причин и механизмов аллергических состояний, в разработке способов лечения и профилактики аллергий. Разработана большая группа иммунобиологических препаратов, ко­торая используется для профилактики, лече­ния и диагностики как инфекционных, так и неинфекционных заболеваний (вакцины, ана­токсины, иммуноглобулины, иммуномодуля­торы, адаптогены, диагностикумы). Намечены пути и методы генодиагностики и генотерапии заболеваний, в основе которых лежат врожден­ные поражения иммунной системы.

На ближайшее будущее перед иммунологи­ей стоят огромные задачи. Основными из них являются:

  • ликвидация и ограничение инфекцион­ной заболеваемости путем иммунопрофилак­тики принципиально новыми и более качес­твенными вакцинами (генно-инженерные, синтетические, полиантигенные, непаренте­ральные);
  • иммунодиагностика, иммунотерапия и иммунопрофилактика злокачественных но­вообразований;
  • на основе структурного и функциональ­ного изучения антигенов гистосовместимос-ти реализация толерантности для устранения иммунологической несовместимости при пе­ресадках органов и тканей;
  • поиск эффективных путей профилакти­ки и лечения иммунопатологических состоя­ний и аллергий различного генеза;
  • изучение и разработка методов устране­ния иммунологических конфликтов между ма­терью и плодом на всех стадиях репродукции;

Таблица 9.3. Процессинг антигена в макроорганизме

Происхождение антигенаВходные воротаФакторы иммунной защитыМеханизмы защитыИсход
врожденныеприобретенные
Экзогенное ЭндогенноеКожа

Слизистые

жкт

Дыхатель- ные пути Урогени тальный тракт Кровь

Лимфа

Механические

барьеры (кожа, слизистые)

Физико-химичес­кие барьеры (фер­менты, рН и др.)

Биологические барьеры (фагоцитоз, комплемент, интерфероны, защитные белки сыворотки крови и др.)

Антителообра-зование

Иммунный фа­гоцитоз Киллерная функция лим­фоцитов

ГЗТ

ГНТ

Толерантность

Иммунологическая память

Инактивация Деструкция

Выведение антигена

Ареактивность

Восстановление гомеостаза

Формирование иммунологичес­кой памяти

Формирование иммунологичес кой толерантности

Формирование аллергии

 

  • изучение путей устранения неблагопри­ятного влияния на иммунный статус эколо­гических, социальных, профессиональных и других факторов;
  • поиск новых эндогенных и экзогенных иммуномодуляторов для использования в им­мунопрофилактике и иммунотерапии;
  • генотерапия и генодиагностика врожден­ных иммунодефицитов.

Безусловно, решение этих грандиозных практических задач, стоящих перед иммуно­логией, возможно только при интенсивном развитии фундаментальной иммунологии.

 

9.1.5. Основные принципы и механизмы функционирования иммунной системы

Функцию специфической защиты от анти­генов выполняет иммунная система, представ­ляющая собой лимфоидную ткань, способную комплексом клеточных и гуморальных реак­ций, осуществляемых с помощью набора им-мунореагентов, нейтрализовать, обезвредить, удалить, разрушить генетически чужеродный антиген, попавший в организм извне или об­разовавшийся в самом организме.

Специфическая функция иммунной системы в обезвреживании антигенов дополняется ком­плексом механизмов и реакций неспецифичес­кого характера, направленных на обеспечение резистентности организма к воздействию любых чужеродных веществ, в том числе и антигенов.

В табл. 9.3 приведены основные факторы неспецифической резистентности организма и специфические факторы иммунитета и их взаимодействие.

Неспецифическая резистентность организма обеспечивается: а) механическими барьерами, препятствующими проникновению в организм чужеродных веществ (кожа, слизистые дыхательных путей, желудочно-кишеч­ного тракта, мерцательный эпителий и слизь дыхательного тракта); б) физико-химически­ми барьерами (ферменты, в первую очередь пищеваритальные, рН среды, органические кислоты и др.), обеспечивающими деструкцию антигенов; в) иммунобиологическими барьерами (фагоциты, комплемент, интерфероны, ингибиторы свертывания крови, фибронектин), которые участвуют в погло­щении и деструкции антигена как чужерод­ного вещества, а также во взаимодействии со специфическими факторами защиты.

К специфическим факторам защиты отно­сятся антитела, иммунный фагоцитоз, цито-токсическая функция лимфоцитов, ГНТ и ГЗТ, толерантность, иммунологическая память.

Обычно специфические формы реагирова­ния иммунной системы включаются как вто­рая линия защиты организма от антигенов в тех случаях, когда антиген преодолевает первую линию защиты, обусловленную фак­торами неспецифической резистентности, т. е. эти две линии обороны функционируют во взаимодействии и взаимосвязи. При этом для обезвреживания того или иного антигена не обязательно должны включаться все фак­торы неспецифической резистентности или специфического иммунитета. Например, для нейтрализации токсина (столбнячного, бо-тулинического) основным фактором специ­фической защиты являются антитела (анти­токсины), для предупреждения проникнове­ния в организм из области «входных ворот» бацилл сибирской язвы основную роль в защите играет фагоцитоз; в формировании специфического иммунитета при туберкуле­зе — ГЗТ и т. д.

Однако чаще всего в процессе защиты орга­низма от антигенов принимает участие комп­лекс специфических и неспецифических ре­акций иммунитета.

Основными биореагентами иммунной сис­темы, осуществляющими функцию защиты от антигенов, являются: иммуноглобулины (специфические, рецепторные, естествен­ные), фагоцитирующие клетки (естественные и иммунные), цитотоксические лимфоциты, осуществляющие киллерную функцию, фер­менты деструкции антигена (лизоцим и др.), комплемент, защитные белки сыворотки крови (пропердин, β-лизин, фибронектин и др.), им-муноцитокины (интерлейкины, интерфероны, пептиды тимуса, миелопептиды, факторы пере­носа, миграции и др.), рецепторы иммуноком-петентных клеток, антигены МНС-системы.

Процессуальная схема (см. табл. 9.3) имму­нитета представляет собой ряд взаимосвязан­ных, последовательно протекающих, саморе­гулирующихся с помощью иммунореагентов процессов, направленных на устранение дейс­твия антигена, на сохранение в неприкосно­венности или восстановление гомеостаза.

Пусковым механизмом для иммунной сис­темы является проникновение антигена во внутреннюю среду организма любым путем (через кожу, слизистые, дыхательные пути, ЖКТ) или образование его в самом организме. Вслед за этим следует распознавание антиге­на как генетически чужеродного вещества: вначале первичное неспецифическое распоз­навание на стадии фагоцита, затем вторичное специфическое распознавание Т-лимфоцитами. Следующим этапом является включение неспецифических и специфических факторов защиты в зависимости от природы и харак­тера антигена и особенностей его патоген­ного воздействия на организм. В результате взаимодействия иммунных факторов и им­мунореагентов с антигеном происходит де­струкция или нейтрализация, или выведение последнего из организма. Иногда организм в результате встречи с антигеном приобретает состояние ареактивности, толерантности к этому антигену. Иммунный процесс в случае благоприятного исхода приводит к восстанов­лению гомеостаза, при этом довольно часто и на длительное время сохраняется иммунитет (невосприимчивость) организма к этому ан­тигену, иммунологическая память о встрече организма с антигеном, иногда толерантность к антигену, а может возникать состояние по­вышенной чувствительности (аллергия) к не­му как нежелательное явление.

 

9.1.6. Виды иммунитета

У человека, теплокровных животных, в том числе у птиц, в процессе эволюции сфор­мировалась иммунная система, специально предназначенная для защиты от генетически чужеродных веществ — антигенов, а также для сохранения и поддержания антигенных особенностей тканей и биомолекул, прису­щих каждому виду и каждому индивиду дан­ного вида.

Элементарные системы защиты от любых чужеродных веществ имеют и низшие орга­низмы, в частности беспозвоночные (губки, кишечнополостные, черви). Способность к распознаванию чужеродных структур прису­ща уже одноклеточным организмам, напри­мер амебам.

Однако анатомическое строение, физиоло­гические функции и иммунологические реак­ции, осуществляемые иммунной системой, у отдельных видов животных, у человека и низ­ших организмов в соответствии с их уровнем эволюционного развития существенно отлича­ются. Так, фагоцитоз и аллогенная ингибиция, как одни из ранних филогенетических защит­ных реакций, присущи всем многоклеточным организмам; дифференцированные лейкоци-топодобные клетки, выполняющие функции клеточного иммунитета, появляются уже у кишечнополостных, кольчатых червей, мол­люсков; у круглоротых (миноги) появляются зачатки тимуса, Т-лимфоциты, иммуноглобу­лины, отмечается иммунологическая память, у рыб появляются типичные для высших живот­ных лимфоидные органы— тимус и селезенка, плазматические клетки и антитела класса М; у птиц уже формируется центральный орган иммунной системы в виде сумки Фабрициуса, осуществляется кооперация клеточного и гу­морального иммунитета, появляется способ­ность реагировать в виде ГНТ; наконец, у млекопитающих иммунная система достигает наиболее высокого уровня развития, форми­руются Т-, В- и А-системы иммунных клеток, осуществляется их кооперативное взаимодейс­твие, появляется способность синтеза имму­ноглобулинов всех пяти классов, способность иммунной системы осуществлять все формы иммунологических реакций.

В зависимости от уровня эволюционного развития, вида особенностей и сложности сформировавшейся иммунной системы, спо­собностей последней отвечать теми или ины­ми реакциями на антигены, в иммунологии принято выделять отдельные виды иммуни­тета. Так, введено понятие о врожденном и приобретенном иммунитете (рис. 9.1).

 

Врожденный, или видовой, иммунитет, он же наследственный, генетический, консти­туциональный — это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену (или микроорганиз­му), обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия.

Примером может служить невосприимчи­вость человека к некоторым возбудителям, в том числе к особо опасным для сельскохозяйственных животных (чума крупного рогатого скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствительность человека к бактериофагам, поражающим клетки бактерий. К генетическому иммунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к од­ним и тем же антигенам у различных линий животных, т. е. животных с различным гено­типом. Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего первый этап взаимодействия данного антигена с клетками или молекулами-мишенями, определяющими запуск патологи­ческого процесса или активацию иммунной системы. Не исключены также возможность быстрой деструкции антигена, например, фер­ментами организма или же отсутствие усло­вий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловлено генетическими особен­ностями вида, в частности отсутствием генов иммунного ответа к данному антигену. Видовой иммунитет может быть абсолютным и относительным. Например, нечувс­твительные к столбнячному токсину лягуш­ки могут реагировать на его введение, если повысить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, приобретают способность реагировать на не­го, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

Приобретенный иммунитет — это невосприимчивость к антигену чувствительного к. нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вакцинации или после перенесенного инфекционного заболевания.

Примером естественного приобретенного им иунитета у человека может служить невосприимчивость к инфекции, возникающая после перенесенного заболевания, так называемый постинфекционныйиммунитет (например, после брюшного тифа, дифтерии и других ин фекций), а также «проиммуниция», т. е. приобретение невосприимчивости к ряду микроорганизмов, обитающих в окружающей среде и в организме человека и постепенно воздейстауюших на иммунную систему своими антиге нами. Известно, что в крови каждого человека можно обнаружить антитела к непатогенным и условно-патогенным бактериям, обитающим в кишечнике человека; у некоторых лиц в крови присутствуют антитела — реагины на раститель­ные антигены (например, пыльцу, тополиный пух); у работников биологической промышлен­ности, например занятых в производстве кормо­вого белка, биоконцентратов и т. д., в результате постоянных контактов с антигеном появляются антитела к нему в крови. Такая «скрытная», не преднамеренная иммунизация зачастую не только нецелесообразна, но и может привести к нежелательным последствиям, как-то: появле­ние иммунодефицитов, аллергических состоя­ний и другой иммунопатологии.

В отличие от приобретенного иммунитета в результате перенесенного инфекционного за­болевания или «скрытной» иммунизации, на практике широко используют преднамерен­ную иммунизацию антигенами для создания к ним невосприимчивости организма. С этой целью применяют вакцинацию, а также вве­дение специфических иммуноглобулинов, сывороточных препаратов или иммунокомпе-тентных клеток (см. гл. 14). Приобретаемый при этом иммунитет называют поствакци­нальным, и служит он для защиты от возбу­дителей инфекционных болезней, а также других чужеродных антигенов.

Приобретенный иммунитет может быть ак­тивным и пассивным. Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (напри­мер, поствакцинальный, постинфекционный иммунитет), а пассивный иммунитет фор­мируется за счет введения в организм уже готовых иммунореагентов, способных обес­печить защиту от антигена. К таким имму-нореагентам относятся антитела, т. е. спе­цифические иммуноглобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммунизации, а также для специ­фического лечения при многих инфекциях (дифтерия, ботулизм, бешенство, корь и др.). Пассивный иммунитет у новорожденных де­тей создается иммуноглобулинами при пла­центарной внутриутробной передаче антител от матери ребенку и играет существенную роль в защите от многих детских инфекций в первые месяцы жизни ребенка.

Поскольку в формировании иммунитета принимают участие клетки иммунной сис­темы и гуморальные факторы, принято ак­тивный иммунитет дифференцировать в за­висимости от того, какой из компонентов иммунных реакций играет ведущую роль в формировании защиты от антигена. В связи с этим различают клеточный, гуморальный, клеточно-гуморальный и гуморально-клеточ-ный иммунитет.

Примером клеточного иммунитета может служить противоопухолевый, а также транс­плантационный иммунитет, когда ведущую роль в иммунитете играют цитотоксические Т-лимфоциты-киллеры; иммунитет при токсинемических инфекциях (столбняк, бо­тулизм, дифтерия) обусловлен в основном антителами (антитоксинами); при туберкулезе ведущую роль играют иммунокомпе-тентные клетки (лимфоциты, фагоциты) с участием специфических антител; при не­которых вирусных инфекциях (натуральная оспа, корь и др.) роль в защите играют специфические антитела, а также клетки иммунной системы.

Следует отметить, что клеточные и гуморальные факторы иммунитета функциони­руют в тесном взаимодействии, всегда в виде комплекса иммунных реакций, причем какая-либо одна или несколько из них играют веду­щую роль, поскольку наиболее эффективно и целенаправленно обеспечивают защиту орга­низма от данного антигена.

В инфекционной и неинфекционной патологии и иммунологии для уточнения харак­тера иммунитета в зависимости от природы и свойств антигена пользуются также такой терминологией: антитоксический, противо­вирусный, противогрибковый, противобактериальный, противопротозойный, трансплан­тационный, противоопухолевый и другие виды иммунитета.

Наконец, иммунное состояние, т. е. актив­ный иммунитет, может поддерживаться, со­храняться либо в отсутствие, либо только в присутствии антигена в организме. В первом случае антиген играет роль пускового фак­тора, а иммунитет называют стерильным. Во-втором случае иммунитет трактуют как не­стерильный. Примером стерильного иммунитета является поствакцинальный иммунитет при введении убитых вакцин, а нестерильного — иммунитет при туберкулезе, который со­храняется только в присутствии в организме микобактерий туберкулеза.

Иммунитет (резистентность к антигену) может быть системным, т. е. генерализован­ным, и местным, при котором наблюдается более выраженная резистентность отдельных органов и тканей, например слизистых верх­них дыхательных путей (поэтому иногда его называют мукозальным).

 

9.2. Факторы неспецифической резистентности организма

В неспецифической защите от микробов и антигенов важную роль, как указывалось выше, играют три барьера: механический, фи­зико-химический и иммунобиологический. Основными защитными факторами этих ба­рьеров являются кожа и слизистые оболочки, ферменты, фагоцитирующие клетки, комп­лемент, интерферон, ингибиторы сыворотки крови.

9.2.1. Кожа и слизистые оболочки

Многослойный эпителий здоровой кожи и слизистых оболочек обычно непроницаем для микробов и макромолекул. Однако при малозаметных микроповреждениях, воспа­лительных изменениях, укусах насекомых, ожогах и травмах через кожу и слизистые могут проникать микробы и макромолекулы. Вирусы и некоторые бактерии могут проникать в макроорганизм межклеточно, чресклеточно и с помощью фагоцитов, перенося­щих поглощенных микробов через эпителий слизистых оболочек. Свидетельством этому является инфицирование в естественных ус­ловиях через слизистые верхних дыхательных путей, легких, желудочно-кишечного тракта и урогенитального тракта, а также возможность пероральной и ингаляционной иммунизации живыми вакцинами, когда вакцинный штамм бактерий и вирусов проникает через слизистые оболочки желудочно-кишечного тракта и дыхательных путей.

 

9.2.2. Физико-химическая защита

На чистой и неповрежденной коже обычно содержится мало микробов, так как потовые и сальные железы постоянно выделяют на ее поверхность вещества, обладающие бактери­цидным действием (уксусная, муравьиная, молочная кислоты).

Желудок также является барьером для про­никающих перорально бактерий, вирусов, ан­тигенов, так как последние инактивируются и разрушаются под влиянием кислого содер­жимого желудка (рН 1,5-2,5) и ферментов. В кишечнике инактивирующими факторами служат ферменты и бактериоцины, образуе­мые нормальной микробной флорой кишеч­ника, а также трипсин, панкреатин, липаза, амилазы и желчь.

 

9.2.3. Иммунобиологическая защита

9.2.3.1. Фагоцитоз

Фагоцитоз (от греч. phagosпожираю, cytosклетка), открытый и изученный И.И.Мечниковым, является одним из ос­новных мощных факторов, обеспечивающих резистентность организма, защиту от ино родных веществ, в том числе микробов. Это наиболее древняя форма иммунной защиты, которая появилась уже у кишечнополостных.

Механизм фагоцитоза состоит в поглоще­нии, переваривании, инактивации инород­ных для организма веществ специализиро-ванными клетками — фагоцитами.

И. И. Мечников к фагоцитирующим клет­кам отнес макрофаги и микрофаги. В на­стоящее время все фагоциты объединены в единую мононуклеарную фагоцитирующую систему. В нее включены тканевые макро­фаги (альвеолярные, перитонеальные и др.), метки Лангерганса и Гренстейна (эпидер-моциты кожи), клетки Купфера (звездчатые ретикулоэндотелиоциты), эпителиоидные клетки, нейтрофилы и эозинофилы крови и некоторые другие. Основные функции фагоцитов. Функции фагоцитов очень обширны: 1) удаляют из организма отмирающие клетки и их структуры (эритроциты, раковые клетки); 2) удаляют неметабилизируемые неорганические вещества, попадающие во внутреннюю среду организма тем или иным путем (например, частички угля, минеральную и другую пыль, проникающую в дыхательные пути); 3) поглощают и инактивируют микробы (бактерии, вирусы, грибы), их останки и продукты; 4) синтези­руют разнообразные биологически активные вещества, необходимые для обеспечения ре­зистентности организма (некоторые компо­ненты комплемента, лизоцим, интерферон, интерлейкины и др.); 5) участвуют в регуля­ции иммунной системы; 6) осуществляют «оз­накомление» Т-хелперов с антигенами, т. е. участвуют в кооперации иммунокомпетент-ных клеток.

Следовательно, фагоциты являются, с одной стороны, своеобразными «мусорщика­ми», очищающими организм от всех ино­родных частиц независимо от их природы и происхождения (неспецифическая функ­ция), а с другой стороны, участвуют в процессе специфического иммунитета путем представления антигена иммунокомпетен-тным клеткам (Т-лимфоцитам) и регуляции их активности.

Стадии фагоцитоза. Процесс фагоцитоза, т. е. поглощения инородного вещества клетка­ми, имеет несколько стадий: 1) приближение фагоцита к объекту поглощения (хемотаксис); 2) адсорбция поглощаемого вещества на по­верхности фагоцита; 3) поглощение вещества путем инвагинации клеточной мембраны с об­разованием в протоплазме фагосомы (вакуоли, пузырьки), содержащей поглощенное вещест­во; 4) слияние фагосомы с лизосомой клетки с образованием фаголизосомы; 5) активация лизосомальных ферментов и переваривание вещества в фаголизосоме с их помощью.

Особенности физиологии фагоцита. Для осуществления своих функций (рис. 9.2) фагоциты располагают обширным набором литических ферментов, а также продуцируют перекисные и N0′ ион-радикалы, которые могут поражать мембрану (или стенку) клетки на расстоянии или после фагоцитирования. На цитоплазматической мембране находятся рецепторы к компонентам комплемента, Fc-фрагментам иммуноглобулинов, гистамину, а также антигены гистосовместимости I и II класса. Внутриклеточные лизосомы содержат до 100 различных ферментов, способных «пе­реварить» практически любое органическое вещество.

Фагоциты имеют развитую поверхность и очень подвижны. Они способны активно пе­ремещаться к объекту фагоцитоза по гради­енту концентрации особых биологически ак­тивных веществ — хемоаттрактантов. Такое передвижение получило название хемотаксис (от греч. chymeia — искусство сплавления металлов и taxisрасположение, построе ние). Это АТФ-зависимый процесс, в кото ром участвуют сократительные белки актин и миозин. К числу хемоаттрактантов относятся, например, фрагменты компонентов комплемента (СЗа и С5а), лимфокины ИЛ-8 и др., продукты распада клеток и бактерий.

Адсорбция вещества на поверхности фагоцита осуществляется за счет слабых химических взаимодействий и происходит либо спонтанно, неспецифически, либо путем связывания со специфическими рецепторами (к иммуноглобулинам, компонентам комплемента). «Захват» фагоцитом вещества вызывает выработку большого количества перекисных радикалов («кислородный взрыв) и N0′, которые вызывают необратимые, летальные повреждения как цельных клеток, так и отдельных молекул.

Поглощение адсорбированного на фагоците вещества происходит путем эндоцитоза. Это энергозависимый процесс, связанный с преобразованием энергии химических связей молекулы АТФ в сократительную активность внутриклеточного актина и миозина. Окружение фагоцитируемого вещества бислойной цитоплазматической мембраной и образование изолированного внутриклеточного пузырька — фагосомы напоминает «застегивание молнии». Внутри фагосомы продолжается атака поглощенного вещества активными радикалами. После слияния фагосомы и лизосомы и образования в цитоплазме фаголизосомы происходит активация лизосомальных ферментов, которые разрушают поглощенное вещество до элементарных составляющих, пригодных для дальнейшей утилизации для нужд самого фагоцита. Непереваренные остатки вещества «хоронятся» вместе с погибшим от старости фагоцитом. Ферментативное расщепление вещества может также происходить внеклеточно при выходе ферментов за пределы фагоцита.

Рис. 9.2. Функциональные структуры макрофага (схема):

АГ – антиген; ДТ – антигенная детерминанта; ФС – фагосома; ЛС – лизосома; ЛФ – лизосомальные фер­менты; ФЛ – фаголизосома; МАГ – метаболизиро-ванный антиген; Г-Н – антиген гистосовместимости II класса (МНС II); Fc – рецептор для Fc-фрагмента молекулы иммуноглобулина; О, СЗа, С5а – рецепто­ры для компонентов комплемента; ИЛ-2 – рецептор для ИЛ-2; у-ИФН – рецептор для у-ИФН; Г – рецептор для гистамина; С – секреция компонентов ком­племента; ПР – секреция перекисных радикалов; ИЛ-1 – секреция ИЛ-1; ФНО – секреция фактора некроза опухоли; СФ – секреция ферментов

 

Фагоциты, как правило, «переваривают» захваченные бактерии, грибы, вирусы, осуществляя таким образом завершенный фаго цитоз. Однако в ряде случаев фагоцитоз но сит незавершенный характер: поглощенные бактерии (например, иерсинии) или вирусы (например, возбудитель ВИЧ-инфекции, натуральной оспы) блокируют ферментативную активность фагоцита, не погибают, не разру­шаются и даже размножаются в фагоцитах. Такой процесс получил название незавершен­ный фагоцитоз.

Небольшой олигопептид может быть эндо-цитирован фагоцитом и после процессинга (т.е. ограниченного протеолиза) включен в состав молекулы антигена гистосовметимости II класса. В составе сложного макромолекулярного комплекса олигопептид выставляется (экспрессируется) на поверхности клетки для «ознакомления» с ним Т-хелперов.

Фагоцитоз активируется под влиянием антител-опсонинов, адъювантами, компле­ментом, иммуноцитокинами (ИЛ-2) и дру­гими факторами. Механизм активирующего действия опсонинов основан на связывании комплекса антиген-антитело с рецепторами к Fc-фрагментам иммуноглобулинов на по­верхности фагоцитов. Аналогичным образом действует комплемент, который способствует связыванию на специфических для него рецепторах фагоцита (С-рецепторах) комплекса антиген-антитело. Адъюванты укрупняют мо­лекулы антигена и таким образом облегчают процесс его поглощения, так как интенсив­ность фагоцитоза зависит от величины поглощаемой частицы. Активность фагоцитов характеризуется фагоцитарными показателями и опсоно-фагоцитарным индексом. Фагоцитарные показатели оцениваются числом бактерий, поглощенных «переваренных» одним фагоцитом в единицу времени, а опсонофагоцитарный индекс представляет отношение фагоцитарных показателей, полученных с иммунной, т. е. содержащей опсонины, и неиммунной сывороткой. Эти показатели используются в клинической практике для определения иммунного статуса индивидуума.

9.2.3.2. Тромбоциты

Тромбоциты также играют важную роль в иммунитете. Они возникают из мегакариоцитов, пролиферацию которых усиливает ИЛ-I 11. Тромбоциты имеют на своей поверхности рецепторы к IgG и IgE, к компонентам комплемента (С1 и СЗ), а также антигены гистосовместимости I класса. На тромбоциты оказывают влияние образующиеся в организме иммун­ные комплексы антиген + антитело (АГ+АТ), активированный комплемент. В результате такого воздействия тромбоциты выделяют биологически активные вещества (гистамин, лизоцим, β-лизины, лейкоплакины, простагландины и др.), которые принимают участие в процессах иммунитета и воспаления.

9.2.3.3. Комплемент

Природа и характеристика комплемен­та. Комплемент является одним из важных факторов гуморального иммунитета, играю­щим роль в защите организма от антигенов. Он был открыт в 1899 г. французским им­мунологом Ж. Борде, назвавшим его «алек­сином». Современное название комплементу дал П. Эрлих. Комплемент представляет собой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соединении антиге­на с антителом или при агрегации антигена. В состав комплемента входят 20 взаимодейс­твующих между собой белков, девять из которых являются основными компонентами ком­племента; их обозначают цифрами: CI, C2, СЗ, С4… С9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они существенно различаются по молекулярной массе, а также имеют слож­ный субъединичный состав: Cl-Clq, Clr, Cls; С3-С3а, С3b; С5-С5а, С5b и т. д. Компоненты комплемента синтезируются в большом коли­честве (составляют 5-10 % от всех белков кро­ви), часть из них образуют фагоциты.

Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемотаксической активностью; в) принимает учас­тие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонен­том многих иммунологических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента очень сложен и представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный ци-толитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый (рис. 9.3). По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Cls. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, С3. Эта реакция имеет характер усиливающегося каскада, т. е. когда одна молекула предыдущсго компонента активирует несколько молекул последующего. «Ранний» компонент комплемента СЗ активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс, который нарушает целостность мембраны (образует в ней дефект), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента С3. Далее реакция идет так же, как и при классическом пути — образуется мембраноатакующий комплекс.

Лектиновый путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов – субъединицы С3а и С3b, С5а и С5b и дру­гие, которые обладают высокой биологической активностью. Например, С3а и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, С3b — играет роль в оп-сонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са2+ и Mg2+.

9.2.3.4. Лизоцим

Особая и немаловажная роль в естествен­ной резистентности принадлежит лизоциму, открытому в 1909 г. П. Л. Лащенко и выделен­ному и изученному в 1922 г. А. Флемингом. Лизоцим — это гидролитический фермент мурамидаза (от лат. mums — стенка) с моле­кулярной массой 14-16 кДа, синтезируемый макрофагами, нейтрофилами и другими фаго­цитирующими клетками и постоянно поступа­ющий в жидкости и ткани организма. Фермент содержится в крови, лимфе, слезах, молоке, сперме, урогенитальном тракте, на слизистых оболочках дыхательных путей, ЖКТ, в мозге. Отсутствует лизоцим лишь только в спинно­мозговой жидкости и передней камере гла­за. В сутки синтезируется несколько десятков граммов фермента. Механизм действия лизоцима сводится к разрушению гликопротеидов (мурамилдипептида) клеточной стенки бактерий, что ведет к их лизису и способствует фагоцитозу поврежденных клеток. Следовательно, лизоцим обладает бактерицидным и бактериостатическим действием. Кроме того, он акти­вирует фагоцитоз и образование антител.

Нарушение синтеза лизоцима ведет к сни­жению резистентности организма, возник­новению воспалительных и инфекционных заболеваний; в таких случаях используют для лечения препарат лизоцима, получаемый из яичного белка или путем биосинтеза, так как он продуцируется некоторыми бактериями (например, Bacillus subtilis), растениям семейс­тва крестоцветных (редис, репа, хрен, капуста и т. д.). Химическая структура лизоцима извес­тна, и он синтезирован химическим способом.

9.2.3.5. Интерферон

Интерферон относится к важным защитным белкам иммунной системы. Открыт в 1957 г. А. Айзексом и Ж. Линдеманом при изучении интерференции вирусов (лат. inter — меж­ду и ferensнесущий), т. е. явления, когда животные или культуры клеток, инфициро­ванные одним вирусом, становились нечувс­твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладаю­щим защитным противовирусным свойством. Этот белок назвали интерфероном. В насто­ящее время интерферон достаточно хорошо изучен, известны его структура и свойства, и он широко используется в медицине как ле­чебное и профилактическое средство.

Интерферон представляет собой семейство белков-гликопротеидов с молекулярной мас­сой от 15 до 70 кДа, которые синтезируются клетками иммунной системы и соединитель­ной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделя­ют три типа: α, β и γ-интерфероны.

Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитарного; бета- интерферон называют фибробластным, поскольку он синтезируется фибробластами — клетками соединительной ткани, а гамма-интерферон — иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица — ME — это количество интерферона, защищающее культуру клеток от 1 ЦПД50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интер­ферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размноже­ние) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна. Получают интерферон двумя способами: а) путем инфицирования культуры лейкоцитов или лимфо­цитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем вы­деляют и конструируют из него препараты интерферона; б) генно-инженерным способом — путем выращивания в производс­твенных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона, Интерферон, полученный генно-инженерным способом, носит название рекомбинантного. В нашей стране рекомбинантный интерферон получил официальное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Рекомбинантный интерферон нашел широкое применение в медицине как профилактическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.

9.2.3.6. Защитные белки сыворотки крови

К защитным белкам сыворотки крови относится ряд протеинов, принимающих участие в защите организма от микробов и других антигенов: белки острой фазы, опсонины, пропердин, бета-лизин, фибронектин и др.

К белкам острой фазы относятся С-реактивный белок, провоспалительные и другие белки, которые вырабатываются в печени в ответ на повреждение тканей и клеток. С-реактивный белок способствует опсонизации бактерий и является индикатором воспаления.

Маннозосвязывающий белок — нормальный протеин сыворотки крови. Способен прочно связываться с остатками маннозы, находящимися на поверхности микробных клеток, и опсонизировать их. Способствует фагоцитозу, активирует систему комплемента по лектиновому пути.

Пропердин — представляет собой гамма-глобулин нормальной сыворотки крови, Способствует активации комплемента по альтернативному пути и таким образом участвует во многих иммунологических реакциях.

Фибронектин — универсальный белок плазмы и тканевых жидкостей, синтезируемый макрофагами. Обеспечивает опсонизацию антигенов и связывание клеток с чужеродными веществами, например фагоцитов с антигенами и микробами, экранирует дефекты эндотелия сосудов, препятствуя тромбообразованию.

Бета-лизины — белки сыворотки крови, синтезируемые тромбоцитами. Оказывают повреждающее действие на цитоплазматическую мембрану бактерий.

ГЛАВА 10. АНТИГЕНЫ И ИММУННАЯ СИСТЕМА ЧЕЛОВЕКА

 

10.1. Антигены

10.1.1. Общие представления

Онтогенез каждого макроорганизма про­ходит в непосредственном контакте с чуже­родными для него клетками, доклеточными формами жизни, а также отдельными моле­кулами биологического происхождения. Все эти объекты, будучи чужеродными, таят в себе огромную опасность: контакт с ними мо­жет нарушить гомеостаз, повлиять на течение биологических процессов и даже повлечь ги­бель макроорганизма. Поэтому чужеродные биологические объекты представляют собой эволюционно сформировавшийся ранний сигнал опасности для иммунной системы: они являются основным раздражителем и ко­нечной точкой приложения системы приоб­ретенного иммунитета. Совокупность таких объектов, как явления биологического мира, получила название антиген (от греч. antiпротив и genos — создавать).

Антиген — это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознается его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Теоретически антигеном может быть мо­лекула любого органического вещества, как вредного для макроорганизма, так и безвредного. В частности, антигенами являются компоненты и продукты жизнедеятельности бак­терий, грибов, простейших, вирусных частиц, организмов животных и растений.

Антигены имеют самое разнообразное про­щение. В сущности, они являются продуктами природного биологического синтеза любого чужеродного организма. В ряде случае антигены могут образовываться в собственном организме при структурных изменениях уже синтезированных молекул при биодегра­дации, нарушении их нормального биосинтеза (эпигенетическая мутация) или генетической мутации клеток. Кроме того, антигены могут быть получены искусственно в результате на­учной или производственной деятельности человека, в том числе путем направленного химического синтеза. Однако в любом случае молекулу антигена будет отличать генетичес­кая чужеродность по отношению к макроор­ганизму, в который она попала.

Антигены могут проникать в макроорга­низм самыми различными путями: через кож­ные покровы или слизистые, непосредствен­но во внутреннюю среду организма, минуя покровы, — или образовываясь внутри него. Антигены распознаются иммунокомпетент-ными клетками и вызывают каскад разнооб­разных иммунных реакций, направленных на их инактивацию, разрушение и удаление.

По современным представлениям, учение об антигенах является ключевым для понима­ния основ молекулярно-генетических меха­низмов иммунной защиты макроорганизма, а также принципов иммунотерапии и имму­нопрофилактики .

 

10.1.2. Свойства антигенов

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

10.1.2.1. Антигенность

Под антигенностью понимают потенциальную способность молекулы антигена активировать компоненты иммунной системы и специфически взаимодействовать с факторами иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген должен выступать специфическим раздражителем по отношению к иммунокомпетентным клеткам. При этом взаимодействие с компонентами иммунной системы происходит не со всей молекулой одновременно, а только с ее небольшим участком, который получил название «антигенная детерминанта», или «эпитоп».

Различают линейные, или секвенциальные, антигенные детерминанты (например, первичная аминокислотная последовательность пептидной цепи) и поверхностные, или конформационные (расположенные на повер­хности молекулы антигена и возникшие в результате вторичной или более высокой конформации). Кроме того, существуют концевые эпитопы (расположенные на концевых участках молекулы антигена) и центральные. Определяют также «глубинные», или скрытые, антигенные детерминанты, которые проявля­ются при разрушении биополимера.

Размер антигенной детерминанты невелик, но может варьировать. Он определяется осо­бенностями антиген-рецепторной части фак­тора иммунитета, с одной стороны, и видом эпитопа — с другой. Например, антигенсвя-зывающий участок молекулы иммуноглобу­лина (как сывороточного, так и рецептора В-лимфоцита) способен распознать линейную антигенную детерминанту, образованную всего лишь 5 аминокислотными остатками. Конформационная детерминанта по сравне­нию с линейной несколько больше — для ее образования требуется 6-12 аминокислотных остатков. Рецепторный аппарат Т-лимфоци-тов ориентирован на иные по строению и раз­меру антигенные детерминанты. В частнос­ти, Т-киллеру для определения чужеродности требуется нанопептид, включенный в состав МНС I класса; Т-хелперу при распознавании «свой-чужой» необходим олигопептид разме­ром 12-25 аминокислотных остатков в комп­лексе с МНС II класса.

Структура и состав эпитопа имеют кри­тическое значение. Замена хотя бы одного структурного элемента молекулы приводит к образованию принципиально новой анти­генной детерминанты с иными свойствами. Нужно также отметить, что денатурация при­водит к полной или частичной потере анти­генных детерминант или появлению новых, при этом теряется специфичность антигена.

Так как молекулы большинства антигенов имеют довольно большие размеры, в их струк­туре определяется множество антигенных детерминант, которые распознаются разными по специфичности антителами и клонами лимфоцитов. Поэтому антигенность вещества зависит от наличия и числа антигенных детерминант в структуре его молекулы.

Чужеродность является обязательным уеловием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объекты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как иммунокомпетентные клетки не способны напрямую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

В норме иммунная система невосприимчива к собственным биополимерам. Если на какой-либо биополимер в макроорганизме возникла реакция, то, соответственно, он приобрел черты чужеродности и перестал восприниматься иммунной системой как «свой». Подобное событие может возникнуть при некоторых патологических состояниях как результат нарушения регуляции иммунного ответа (см. «аутоантигены», «аутоантитела», «аутоиммунитет», «аутоиммунные болезни»).

Чужеродность находится в прямой зависи­мости от «эволюционного расстояния» между организмом-реципиентом и донором антигенов. Чем дальше в филогенетическом развитии организмы отстоят друг от друга, тем большей чужеродностью и, следовательно, иммуногенностью обладают их антигены по отношению друг к другу. Это свойство используют биологи и палеонтологи (при изучении филогенеза, уточнении классификации и т. д.), судебно-медицинские эксперты и криминалисты (установление кровного родства, принадлежности улик, фальсификации пищевых продуктов и т. д.).

Чужеродность заметно проявляется даже между особями одного вида. Отмечено, что единичные замены аминокислот, составляющих основу внутривидового полиморфизма, эффективно распознаются антителами в серологических реакциях.

Вместе с тем антигенные детерминанты даже генетически неродственных животных или структурно различных биополимеров могут иметь определенное подобие. В этом случае их антигены оказываются способными специ­фически взаимодействовать с одними и теми же факторами иммунитета. Такие антигены получили название перекрестно реагирующих. Описанное явление характерно, например, для альбуминов, коллагенов, миоглобинов различ­ных видов животных. Обнаружено также сходс­тво антигенных детерминант стрептококка, сарколеммы миокарда и базальной мембраны почек, Treponema pallidum и липидной вытяжки из миокарда крупного рогатого скота, возбуди­теля чумы и эритроцитов человека О (I) группы крови. Явление, когда один микроб маскирует­ся антигенами другого микроба или макроорга­низма для «защиты» от факторов иммунитета, получило название антигенная мимикрия.

 

10.1.2.2. Иммуногенность

Иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы:

  • Молекулярные особенности антигена;
  • Клиренс антигена в организме;
  • Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

Иммуногенность в значительной степени за­висит от природы антигена. Известно, что наибо­лее выраженными иммуногенными свойствами обладают белки и полисахариды, а нуклеино­вые кислоты и липиды, напротив, слабоимму-ногенны. В то же время их сополимеры: ЛПС, гликопротеиды, липопротеиды, — способны в достаточной мере активировать иммунную сис­тему и поэтому занимают промежуточное поло­жение по степени иммуногенности.

Определенное влияние на степень имму­ногенности оказывает химический состав мо­лекулы антигена. В частности, для иммуно­генности белков важно разнообразие их ами­нокислотного состава. Отмечено также, что сополимеры, состоящие из нескольких амино­кислот, иммуногеннее, чем из одной амино­кислоты. «Монотонные» полипептиды, построенные из одной аминокислоты, практически не активируют иммунную систему. Наличие в структуре молекулы белка ароматических ами­нокислот, таких как тирозин, триптофан, су­щественно повышает иммуногенность.

Важна также оптическая изомерия ами-нокслот, составляющих молекулу белка. Пептиды, построенные из L-аминокислот, легко поддаются ферментативной деграда­ции и высокоиммуногенны. Полипептидная цепочка, построенная из правовращающих изомеров аминокислот, напротив, медленно расщепляется ферментами макроорганизма и может проявлять лишь ограниченную имму­ногенность при введении в очень малых до­зах, так как высокие дозы таких соединений быстро приводят к развитию иммунологичес­кой толерантности (см. гл. 11, разд. 11.6).

Несмотря на кажущуюся равноценность ан­тигенных детерминант по иммуногенности, в их спектре существует определенная иерархия. Она проявляется тем, что эпитопы различают­ся по способности индуцировать иммунный ответ. Поэтому при иммунизации некоторым антигеном в полученном спектре антител будут преобладать иммуноглобулины, специфичные к отдельным антигенным детерминантам. Это явление получило название иммунодоминант-ности. По современным представлениям, им-мунодоминантность обусловлена различиями в сродстве эпитопов к антигенпрезентирую-щим комплексам гистосовместимости.

Большое значение имеет размер и молекулярная масса антигена. Несмотря на то, что белки хорошо стимулируют иммунную систему, небольшие по­липептидные молекулы с молекулярной массой менее 5 кДа, как правило, низкоиммуногенны. Минимальный расчетный размер олигопептида, способный индуцировать иммунный ответ, 6-12 аминокислотных остатков с молекулярной мас­сой около 450 Да. С увеличением размера пептида возрастает его иммуногенность. Теоретически су­ществует определенная зависимость между этими параметрами, однако на практике она не всегда выполняется из-за влияния посторонних факто­ров. Так, например, при равной молекулярной массе (около 70 кДа) альбумин является более сильным антигеном, чем гемоглобин.

Для полисахаридов сохраняются примерно те же зависимости, что и для пептидных антигенов. Например, практически не проявляет никакой иммуногенности декстран, который используют в клинике для трансфузионной терапии — его молекулярная масса составля­ет около 75 кДа. В то же время полисахарид с молекулярной массой 600 кДа достаточ­но хорошо индуцирует в организме человека иммунную реакцию. Примечательно, что на нуклеиновые кислоты описанные закономер­ности практически не распространяются.

На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Чрезвычайно важным оказалось наличие в структуре антигена а-спирали, разветвлен­ных боковых цепей, а также высокой плотнос­ти идентичных по строению эпитопов.

Опытным путем было доказано, что вы­сокодисперсные коллоидные растворы ан­тигена плохо индуцируют иммунный ответ. Гораздо большей иммуногенностью обладают агрегаты молекул и корпускулярные антиге­ны — цельные клетки (эритроциты, бактерии и т. д.). Это связано с тем, что корпускулярные и высокоагрегированные антигены лучше фа­гоцитируются, чем отдельные молекулы.

Важность пространственной структуры ан­тигена подчеркивает и тот факт, что фибрил­лярный белок коллаген, имеющий большую молекулярную массу (около 330 кДа), обладает значительно меньшей иммуногенностью по сравнению с таким глобулярным белком, как альбумин, который почти в 5 раз его легче.

Оказалась также существенной стерическая стабильность молекулы антигена. При денату­рации коллагена до желатина вместе с конфор-мационной «жесткостью» структуры молекулы практически полностью исчезает и ее иммуно-генность. Поэтому растворы желатина широко используются для парентерального введения.

Еще одним важным условием иммуно­генности является растворимость антигена. Например, такие высокомолекулярные бел­ки, как кератин, меланин, натуральный шелк, как и другие высокополимерные соединения, не могут быть получены в виде коллоидно­го раствора в нормальном состоянии, и они не являются иммуногенами. Благодаря этому свойству конский волос, шелк, кетгут и дру­гие применяются в клинической практике для восстановления целостности органов и тканей. Поэтому воспалительную реакцию в месте шва или репозиции не следует рас­сматривать как иммунологический конфликт, спровоцированный шовным материалом.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость имму­ногенности антигена от способа его введения. Это свойство обусловлено анатомо-топографически-ми особенностями строения и развития иммун­ной системы в местах аппликации антигена, а также биологической природой иммуногена и в обязательном порядке учитывается при вакци­нации или иммунизации. Например, учитывая тропизм антигена, вакцину против полиомиели­та вводят перорально, против сибирской язвы – накожно, БЦЖ — внутрикожно, АКДС — под­кожно, против столбняка — внутримышечно.

На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ. Однако передозировка антигена вызывает обратную реакцию — иммунологическую толерантность. Между количеством антигена и силой иммун­ного ответа в определенном отрезке (интервале) доз существует логарифмическая зависи­мость, выражаемая уравнением антигенности (А. А. Воробьев, А. В. Маркович):

lgH = a+ (31gD,

где а и S — коэффициенты, характеризующие соответственно природу антигена и иммуно-реактивность макроорганизма; Н — сила иммунного ответа; D — количество антигена.

Третья группа объединяет факторы, опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы. Хорошо известно, что результат иммунизации в определенной мере связан с генотипом особи. Существуют чувствительные и нечувствительные к определенным антигенам роды и виды живот­ных, которых используют в лабораторной работе. Например, кролики и крысы практически не ре­агируют на некоторые бактериальные антигены, которые могут вызывать у морской свинки или мыши чрезвычайно бурный иммунный ответ.

Даже внутри вида можно выделить группы! близкородственных особей (например, инбредные линии животных), которые по-раз­ному будут отвечать на вводимый антиген. Входе гибридологического исследования ус­тановлено, что сила иммунного ответа на простой антиген у мышей детерминируется одним геном и имеет доминантный модус на­следования. Иммунное реагирование на слож­ные по строению антигены имеет мультиген-ный контроль. Причем у мышей и морских свинок четко прослеживается ассоциация силы иммунного ответа с генами главного комплекса гистосовместимости. В популяции людей также известны значительные (в десят­ки и сотни раз) межиндивидуальные различия в чувствительности к вакцинам — выделяют иммунологически реактивных и иммунологи-чески инертных индивидуумов.

Однако, как показали исследования, наряду с генетической предрасположенностью нема­ловажное значение имеет также функциональ­ное состояние макроорганизма — его психо­эмоциональный и гормональный фон, интен­сивность обменных процессов и пр. От этого зависит различный уровень чувствительности к одному и тому же антигену, как у одного ин­дивидуума в разные возрастные периоды, так и популяционная гетерогенность в целом. Таким образом,

Иммуногенность является важным свойс­твом антигена, которое необходимо учиты­вать не только в научных исследованиях. С иммуногенностью, а точнее с индивиду­альной реактивностью макроорганизма на введение антигена, связаны популяционные проблемы вакцинации. Ввиду сложности (подбора индивидуальной дозы вакцинного препарата, применяют те дозы, способы и формы его введения, которые обеспечивают наибольший процент положительных реакций в популяции в целом. Считается, что для предотвращения или прекращения развития эпидемического процесса необходимо, чтобы иммунитетом в коллективе располагало 95 % привитых. Иммуногенностью антигена можно управлять, модифицируя перечисленные выше факторы. Существуют группы веществ: адъювантов и иммуномодуляторов, — кото­рые способны неспецифически усиливать это свойство антигена. Такой эффект широко используется при создании вакцин, в имму­нотерапии, иммунопрофилактике и научно-исследовательской работе.

 

10.1.2.3. Специфичность

Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа — необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов анти-генреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раздражение всегда отвечает поликлональными иммунным ответом. Подсчитано, что на отдельные антигенные детерминанты одновременно ре­агирует до ста различных клонов эффектор-ных лимфоцитов. Это обусловливает широкий спектр варьирования аффинности специфичес­ких иммуноглобулинов, и такие иммуноглобу­лины называют поликлональными.

 

10.1.3. Классификация антигенов

Основываясь на отдельных характерных свойствах, все многообразие антигенов может быть подразделено на несколько классифика­ционных групп:

  • по происхождению;
  • по природе;
  • по молекулярной структуре;
  • по степени иммуногенности;
  • по степени чужеродности;
  • по направленности активации и обеспе­ченности иммунного реагирования.

По происхождению различают экзоген­ные (возникшие вне организма) и эндоген­ные (возникшие внутри организма) антигены. Среди эндогенных особого внимания заслу­живают ауто- и неоантигены.

Аутогенные антигены (аутоантигены), или антигены собственного организма, — это структурно неизмененные молекулы, синтези­руемые в организме в физиологических усло­виях. В норме аутоантигены не вызывают ре­акцию иммунной системы вследствие сформи­ровавшейся иммунологической толерантности (невосприимчивости) либо их недоступности для контакта с факторами иммунитета — это так называемые забарьерные антигены. При срыве толерантности или нарушении целост­ности биологических барьеров (наиболее час­тая причина — травма) компоненты иммунной системы начинают специфически реагировать на аутоантигены выработкой специфических факторов иммунитета (аутоантитела, клон аутореактивных лимфоцитов).

От аутоантигенов следует отличать неоантигены, которые возникают в организме в результате мутаций. После модификации мо­лекулы приобретают черты чужеродности.

По природе: биополимеры белковой (протеиды) и небелковой природы (полиса­хариды, липиды, липополисахариды, нуклеи­новые кислоты и пр.).

По молекулярной структуре: глобуляр­ные (молекула имеет шаровидную форму) и фибриллярные (форма нити).

По степени иммуногенности: полноцен­ные и неполноценные. Полноценные анти­гены обладают выраженной антигенностью и иммуногенностью — иммунная система чувствительного организма реагирует на их введение выработкой факторов иммунитета. Такие вещества, как правило, имеют доста­точно большую молекулярную массу (более 10 кДа), большой размер молекулы (частицы) в виде глобулы и хорошо взаимодействуют с факторами иммунитета.

Неполноценные антигены, или гаптены (термин предложен К. Ландштейнером), напротив, не способны при введении в нормальных условиях индуцировать в организме иммунный ответ, так как обладают крайне низкой иммуногенностью. Однако свойство антигенностиони не утратили, что позволяет им специфически взаимодейс­твовать с уже готовыми факторами иммунитета (антителами, лимфоцитами). Чаще всего гаптенами являются низкомолекулярные соединения (молекулярная масса меньше 10 кДа).

При определенных условиях удается за­ставить иммунную систему макроорганизма специфически реагировать на гаптен как на полноценный антиген и вырабатывать факторы иммунитета. Для этого необходимо искусственно укрупнить молекулу гаптена соединить ее прочной связью с достаточно большой белковой молекулой. Молекула белка-носителя получила название шлеппер (от нем. schlepper — буксир). Синтезированный таким образом конъюгат будет обладать всеми свойствами полноценного антигена и вызывать при введении в организм выработку антител или клона лимфоцитов, специфичных к гаптенной части комплекса. При этом специфичность в составе молекулы конъюгата определяется гаптенной частью, а иммуногенность — белком-носителем.

Используя для иммунизации конъюгаты, получают антитела к гормонам, лекарственным препаратам и другим низкоиммуногенным соединениям. Созданные на основе антител к низкомолекулярным веществам диагностикумы, диагностические наборы и иммуносорбенты позволили значительно расширить возможности и повысить эффективность лабораторной диагностики и фармакотерапии, а также синтеза и выделения особо чистых биоорганических соединений.

По степени чужеродности: ксено-, алло- и изоантигены. Ксеногенные антигены (или гетерологичные) — общие для организмов, стоящих на разных ступенях эволюционного развития, например, относящиеся к разным родам и видам. Впервые феномен общности ряда антигенов у животных различных видов был отмечен Д. Форсманом (1911). Ученый иммунизировал кролика суспензией органов морской свинки. Оказалось, что полученная в ходе эксперимента иммунная сыворотка была способна взаимодействовать не только с антигенами морской свинки, но также агглютинировать эритроциты барана. Позже было установлено, что морская свинка и баран имеют ряд структурно сходных антигенных детерминант, дающих перекрестное реагирование. В дальнейшем перечень подобных ксеногенных антигенов был расширен десятками и сотнями пар и даже триплетов, которые фор мировали между собой как теплокровные, так и холоднокровные животные, растения и мик-робы. Все эти антигены получили обобщенное название антигены Форсмана. В настоящее время антигены Форсмана рассматривают в историческом аспекте, а исследование гетеро-антигенов широко применяется в судебно-ме­дицинской экспертизе, палеонтологии и дру­гих областях медицины и естествознания.

Амогенные антигены (или групповые) — об­щие для генетически неродственных орга­низмов, но относящихся к одному виду. На основании аллоантигенов общую популяцию организмов можно подразделить на отдельные группы. Примером таких антигенов у людей являются антигены групп крови (системы АВО и др.) и многие другие. Аллогенные ткани при трансплантации иммунологически несов­местимы — они отторгаются или лизируются реципиентом. Микробы на основании груп­повых антигенов могут быть подразделены на серогруппы. Это имеет большое значение для микробиологической диагностики (например, классификация сальмонелл Кауфмана—Уайта) и эпидемиологического прогнозирования.

Изогенные антигены (или индивидуаль­ные) — общие только для генетически иден­тичных организмов, например для однояйцо­вых близнецов, инбредных линий животных. Изотрансплантаты обладают практически полной иммунологической совместимостью и не отторгаются реципиентом при пересадке. Примером таких антигенов в популяции лю­дей являются антигены гистосовместимости, а у бактерий — типовые антигены, не дающие дальнейшего расщепления.

В пределах отдельного организма в опреде­ленных анатомо-морфологических образовани­ях (например, органах или тканях) обнаружива­ются специфичные для них антигены, которые в других органах и тканях больше не встреча­ются. Это, например, раковоэмбриональные антигены (альфа-фетопротеин, трансферрин). Такие антигены получили обобщенное назва­ние органе- и тканеспецифтеских. Отдельным критерием классификации является направленность активации и обеспеченность иммунного реагирова­ния в ответ на внедрение антигена. В зависи­мости от физико-химических свойств вещест­ва, условий его внедрения, характера реакции и реактивности макроорганизма различают иммуногены, толерогены и аллергены.

Иммуногены при попадании в организм спо­собны индуцировать продуктивную реакцию иммунной системы, которая заканчивается выработкой факторов иммунитета (антите­ла, антигенореактивные клоны лимфоци­тов). В клинической практике иммуногены используют для иммунодиагностики, имму­нотерапии и иммунопрофилактики многих патологических состояний.

Толероген является полной противополож­ностью иммуногену. При взаимодействии с системой приобретенного иммунитета он вы­зывает включение альтернативных механиз­мов, приводящих к формированию иммуноло­гической толерантности или неотвечаемости на эпитопы данного толерогена (см. разд. 11.6). Толерогену, как правило, присуща мономер­ность, низкая молекулярная масса, высокая эпитопная плотность и высокая дисперсность (безагрегатность) коллоидных растворов. Толерогены используют для профилактики и лечения иммунологических конфликтов и ал­лергии путем наведения искусственной неот­вечаемости на отдельные антигены.

Аллерген также воздействует на систему приобретенного иммунитета. Однако, в отли­чие от иммуногена, производимый им эффект формирует патологическую реакцию организ­ма в виде гиперчувствительности немедлен­ного или замедленного типа (см. разд. 11.4). По своим свойствам аллерген не отличается от иммуногена. В клинической практике ал­лергены применяют для диагностики инфек­ционных и аллергических заболеваний.

Среди иммуногенов выделяют две груп­пы антигенов, различающихся по необходи­мости вовлечения Т-лимфоцитов в индук­цию иммунного ответа. Это — Т-зависимые и Т-независимые антигены. Иммунная реакция в ответ на введение Т-зависимого антиге­на реализуется при обязательном участии Т-лимфоцитов (Т-хелперов). К Т-завис-мым относится большая часть известных антигенов. В то же время для развития им­мунного ответа на Т-независимые антигены не требуется привлечение Т-хелперов. Эти антигены способны непосредственно сти­мулировать В-лимфоциты к антителопро-дукции, дифференцировке и пролиферации, а также вызывать иммунный ответ у бестимусных животных. Т-независимые антигены имеют относительно простое строение. Это крупные молекулы с молекулярной массой более 103 кДа, они поливалентны и имеют монотонно повторяющиеся последователь­ности с многочисленными однотипными эпитопами. Т-независимые антигены обла­дают митогенным действием и способны индуцировать поликлональную реакцию. В качестве примера можно привести полимер­ную форму флагеллина (сократительный бе­лок жгутиков бактерий), Л ПС, туберкулин, сополимеры D-аминокислот и др.

От Т-независимых антигенов следует отличать суперантигены. Это условный термин, введенный для обозначения группы веществ, в основном, микробного происхождения, которые могут неспецифически вызывать поликлональную реак­цию. В организме в обход естественного процес-синга антигена цельная молекула суперантигена способна вмешиваться в кооперацию антигенп-резентирующей клетки и Т-хелпера и нарушать распознавание «свой-чужой». Установлено, что молекула суперантигена самостоятельно связывается с межклеточным комплексом «антиген гистосовместимости II класса — Т-клеточный рецептор» и формирует ложный сигнал распоз­навания чужеродной субстанции. В процесс не­специфической активации одновременно вовле­кается огромное количество Т-хелперов (до 20 % от общей массы и более), возникает гиперпро­дукция цитокинов, за которой следует поликлональная активация лимфоцитов, их массовая ги­бель вследствие апоптоза и развитие вторичного функционального иммунодефицита.

На сегодняшний день свойства суперанти­гена обнаружены у стафилококкового энте-ротоксина, белков вирусов Эпштейна—Барр, бешенства, ВИЧ и некоторых других микро­бных субстанций.

10.1.4. Антигены организма человека

Начало изучению аллоантигенных свойств тканей было положено К. Ландштайнером, который в 1900 г. открыл систему групповых антигенов эритроцитов (АВО). В организме человека выделяют множество разнообразных антигенов. Как биологические объекты, они нужны не только для полноценного развития и функционирования всего организма в целом, но также несут важную информацию, столь необходимую для клинико-лабораторной диагностики при определении иммунологической совместимости органов и тканей в трансплантологии, а также в научных исследованиях.

С позиций клинической медицины наибольший интерес и важность из числа группоспецифических (аллогенных) антигенов представляют антигены групп крови, среди индивидуально специфических (изогенных) — антигены гистосовместимости, а в группе органо- и тканеспецифических — раковоэмбриональные антигены.

 

10.1.4.1. Антигены групп крови человека

Антигены групп крови человека легко определяются на мембране эритроцитов, поэтому они получили название «эритроцитарные антигены». На сегодняшний день известно более 250 различных эритроцитарных антигенов.

Наиболее важное клиническое значение имеют антигены системы АВО и Rh (резус-фактор): их необходимо учитывать при проведении гемотрансфузионной терапии, пересадке органов и тканей, предупрежде­нии и лечении иммуноконфликтных осложнений беременности и т. д.

Антигены системы АВО располагаются на наружной мембране всех клеток крови и тканей человека, но наиболее выражены на эритроцитах. Кроме того, у большинства людей (80 %) эти антигены обнаруживаются в плазме крови, лимфе, секретах слизистых и других биологических жидкостях. Антигены системы АВО синтезируются ядросодержащими предшественниками эритроцитов и многими другими клетками организма. Они свободно секретируются в межклеточное пространство и поэтому могут появиться на мембране клетки либо как продукт клеточного биосинтеза, либо в результате сорбции из межклеточных жидкостей.

Антигены системы АВО представляют собой высокогликозилированные пептиды: 85 % приходится на углеводную часть и 15 % — на полипептидную. Пептидный компонент состоит из 15 аминокислотных остатков. Он постоянен для всех групп крови АВО и иммунологически инертен. Иммуногенность молекулы антигена систеI мы АВО определяется его углеводной частью.

В системе антигенов АВО выделяют три вари­анта антигенов, различающихся по строению углеводной части: Н, А и В. Базовой молекулой является антиген Н, специфичность которого определяют три углеводных остатка. Антиген А имеет в структуре дополнительный, четвертый углеводный остаток— К-ацетил-О-галактозу, а антиген В — D-галактозу. Антигены системы АВО имеют независимое аллельное наследо­вание, что определяет наличие в популяции 4 групп крови: 0(1), А (II), В (III) и AB(IV). Кроме того, антигены А и В имеют несколько аллотипов (например, А,, А^, Aj… или В,, В2, В,…), которые встречаются в популяции людей с различной частотой.

Определяют групповую принадлежность па­циента по системе антигенов АВО в реакции агглютинации — эритроциты пациента тес­тируются специфическими групповыми ан­тисыворотками. Однако, учитывая высокий популяционный полиморфизм данной анти­генной системы, перед гемотрансфузией в обя­зательном порядке проводят биологическую пробу на совместимость реципиента и препа­рата донорской крови. Ошибка в определении групповой принадлежности и переливание па­циенту несовместимой по группе крови, как правило, приводит к развитию острого состо­яния — внутрисосудистого гемолиза вплоть до гемолитического шока и гибели пациента. Второй важнейшей системой эритроцитар-ных антигенов является система резус (Rh) — «называемые резус-антигены или резус-факторы. Эти антигены синтезируются предшественниками эритроцитов и обнаруживаются главным образом на эритроцитах, так как они нерастворимы в биологических жидкостях. По химической структуре резус-антиген пред­ставляет собой термолабильный липопротеид. Выделяют 6 разновидностей этого антигена. Генетическая информация о его строении на­ходится в многочисленных аллелях трех сцеп­ленных между собой локусов (D/d, С/с, Е/е). В зависимости от наличия или отсутствия резус-антигена, в популяции людей различают да группы: резус-положительные и резус-отрицательные индивидуумы. Совпадение по резус-антигену важно не только при переливании крови, но также для течения и исхода беременности.

При беременности «резус-отрицательной» матери «резус-положительным» плодом может развиться «резус-конфликт». Это патологическое состояние связано с выработкой антирезуеных антител, способных вызвать иммунологический конфликт: невынашивание беременности или желтуху новорожденного (внутрисосудистый иммунный лизис эритроцитов).

Эпитопная плотность антигена на мембране эритроцитов невысока. Кроме того, его моле­кула недостаточно удобна для взаимодействия с антителами. Поэтому «резус-антигены» оп­ределяют на мембране эритроцитов в реакции непрямой агглютинации (реакция Кумбса).

 

10.1.4.2. Антигены гистосовместимости

На цитоплазматических мембранах практи­чески всех клеток макроорганизма обнаруживаются антигены гистосовместимости. Большая часть из них относится к системе главного комплекса гистосовместимости, или МНС (аббр. от англ. Main Hystocompatibility Complex).

Антигены гистосовместимости играют ключевую роль в осуществлении специфичес­кого распознавания «свой-чужой» и индук­ции приобретенного иммунного ответа. Они определяют совместимость органов и тканей при трансплантации в пределах одного вида, генетическую рестрикцию (ограничение) иммунного реагирования и другие эффекты.

Большая заслуга в изучении МНС, как яв­ления биологического мира, принадлежит Дж. Доссе, П.Догерти, П. Гореру, Г. Снеллу, Р. Цинкернагелю, Р. В. Петрову, ставшим ос­новоположниками иммуногенетики.

Впервые МНС был обнаружен в 60-х годах XX в. в опытах на генетически чистых (инбред-ных) линиях мышей при попытке межлиней­ной пересадки опухолевых тканей (П. Горер, Г. Снелл). У мышей этот комплекс получил на­звание Н-2 и был картирован в 17-й хромосоме.

У человека МНС был описан несколько позже в работах Дж. Доссе. Его обозначи­ли как HLA (аббр. от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоци­тами. Биосинтез HLA определяется генами, локализованными сразу в нескольких локусах короткого плеча 6-й хромосомы.

МНС имеет сложную структуру и высокую полиморфность. По химической природе анти­гены гистосовместимости представляют собой гликопротеиды, прочно связанные с цитоплаз-матической мембраной клеток. Их отдельные фрагменты имеют структурную гомологию с молекулами иммуноглобулинов и поэтому от­носятся к единому суперсемейству. Различают два основных класса молекул МНС. Условно принято, что МНС I класса индуцирует преиму­щественно клеточный иммунный ответ, а МНС II класса— гуморальный. Основные классы объединяют множество сходных по структуре антигенов, которые кодируются множеством аллельных генов. При этом на клетках индиви­дуума могут экспрессироваться не более двух разновидностей продуктов каждого гена МНС, что важно для поддержания популяционной гетерогенности и выживания как отдельной особи, так и всей популяции в целом.

МНС I класса состоит из двух нековалент-но связанных полипептидных цепей с разной молекулярной массой: тяжелой альфа-цепи и легкой бета-цепи (рис. 10.1). Альфа-цепь имеет внеклеточный участок с доменным строением (al-, a2- и аЗ-домены), трансмембранный и цитоплазматический. Бета-цепь представляет собой бета-2-микроглобулин, который «нали­пает» на аЗ-домен после экспрессии альфа-це­пи на цитоплазматической мембране клетки.

Альфа-цепь обладает высокой сорбционной способностью по отношению к пептидам. Это свойство определяется al- и а2-доменами, формирующими так называемую «щель Бьоркмана» — гипервариабельный участок, ответственный за сорбцию и презентацию молекул антигена. «Щель Бьоркмана» МНС класса вмещает нанопептид, который в таком виде легко выявляется специфическими антителами.

Процесс формирования комплекса «МНС I класса-антиген» протекает внутриклеточно непрерывно. В его состав включаются любые эндогенно синтезированные пептиды, в том числе вирусные. Комплекс изначально соби­рается в эндоплазматическом ретикулуме, куда при помощи особого белка, протеосомы, пере­носятся пептиды из цитоплазмы. Включенный в комплекс пептид придает структурную устойчивость МНС класса. В его отсутствие функцию стабилизатора выполняет шаперон (калнексин).

Для МНС I класса характерна высокая скорость биосинтеза — процесс завершается за 6 часов. Этот комплекс экспрессируются на поверхности практически всех клеток, кроме эритроцитов (в безъядерных клетках отсутствует биосинтез) и клеток ворсинчатого тро фобласта («профилактика» отторжения плода). Плотность МНС I класса достигает 7000 молекул на клетку, и они покрывают около 1 % ее поверхности. Экспрессия молекул заметно усиливается под влиянием цитокинов, например у интерферона.

В настоящее время у человека различают более 200 различных вариантов HLAI класса. Они кодируются генами, картированными в трех основных сублокусах 6-й хромосомы и наследуются и проявляются независимо: HLA-A, HLA-B и HLA-C. Локус А объединяет более 60 вариантов, В — 130, а С — около 40.

Типирование индивидуума по HLA I класса проводится на лимфоцитах серологическими методами — в реакции микролимфоцитолизасо специфическими сыворотками. Для диагностики используют поликлональные специфические антитела, обнаруживаемые в сыворотке крови многорожавших женщин, пациентов, получавших массивную гемотрансфузионную терапию, а также моноклональные.

Учитывая независимое наследование генов сублокусов, в популяции формируется беско­нечное множество неповторяющиеся комбинаций HLAI класса. Поэтому каждый человек строго уникален по набору антигенов гистосовместимости, исключение составляют только однояйцовые близнецы, которые абсолютно похожи по набору генов. Основная биологи­ческая роль HLA I класса состоит в том, что они определяют биологическую индивидуаль­ность («биологический паспорт») и являются маркерами «своего» для иммунокомпетентных клеток. Заражение клетки вирусом или мутация изменяют структуру HLAI класса. Содержащая чужеродные или модифицированные пептиды молекула МНС I класса имеет нетипичную для данного организма структуру и является сиг­налом для активации Т-киллеров (СD8+-лимфоциты). Клетки, отличающиеся по I классу, уничтожаются как чужеродные.

В структуре и функции МНС II класса есть ряд принципиальных отличий. Во-первых, они имеют более сложное строение. Комплекс об­разован двумя нековалентно связанными по­липептидными цепочками (альфа-цепь и бета-цепь), имеющими сходное доменное строение (рис. 10.1). Альфа-цепь имеет один глобулярный участок, а бета-цепь — два. Обе цепи как трансмембранные пептиды состоят из трех участков — внеклеточного, трансмембранного и цитоплазматического.

Во-вторых, «щель Бьоркмана» в МНС II клас­са образована одновременно обеими цепочками. Она вмещает больший по размеру олигопептид (12-25 аминокислотных остатков), причем пос­ледний полностью «скрывается» внутри этой щели и в таком состоянии не обнаруживается специфическими антителами.

В-третьих, МНС II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный са­мой клеткой. В-четвертых, МНС II класса экспресси-руется на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хел-перах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение МНС II класса на нетипичных клетках расценивается в настоящее время как иммунопатология.

Биосинтез МНС II класса протекает в эн-доплазматическом ретикулуме, образующий­ся димерный комплекс затем встраивается в цитоплазматическую мембрану. До включе­ния в него пептида комплекс стабилизируется шапероном (калнексином). МНС II класса экспрессируется на мембране клетки в течение часа после эндоцитоза антигена. Экспрессия комплекса может быть усилена у-интерферо-ном и снижена простагландином Е2.

У мыши антиген гистосовместимости по­лучил название la-антиген, а у человека, по аналогии, — HLA II класса.

По имеющимся данным, человеческому организму свойственен чрезвычайно высо­кий полиморфизм HLA II класса, который в большей степени определяется особенностя­ми строения бета-цепи. В состав комплекса входят продукты трех основных локусов: HLA DR, DQ и DP. При этом локус DR объединяет около 300 аллельных форм, DQ — около 400, а DP – около 500.

Наличие и тип антигенов гистосовмес­тимости II класса определяют в серологи­ческих (микролимфоцитотоксический тест) и клеточных реакциях иммунитета (сме­шанная культура лимфоцитов, или СКЛ). Серологическое типирование МНС II класса производят на В-лимфоцитах с использо­ванием специфических антител, обнаружи­ваемых в сыворотке крови многорожавших женщин, пациентов, получавших массивную гемотрансфузионную терапию, а также син­тезированных методами генной инженерии. Тестирование в СКЛ позволяет выявить ми­норные компоненты МНС II класса, не опре­деляемые серологически. В последнее время все чаще применяют ПЦР.

Биологическая роль МНС II класса чрез­вычайно велика. Фактически этот комплекс участвует в индукции приобретенного им­мунного ответа. Фрагменты молекулы анти­гена экспрессируются на цитоплазматичес-кой мембране особой группы клеток, которая получила название антигенпрезентирующих клеток (АПК). Это еще более узкий круг сре­ди клеток, способных синтезировать МНС II класса. Наиболее активной АПК считается дендритная клетка, затем — В-лимфоцит и макрофаг. Структура МНС II класса с включенным в него пептидом в комплексе с ко-факторными молекулами CD-антигенов вос­принимается и анализируется Т-хелперами (С04+-лимфоциты). В случае принятия ре­шения о чужеродности включенного в МНС II класса пептида Т-хелпер начинает синтез соответствующих иммуноцитокинов, и вклю­чается механизм специфического иммунного реагирования. В итоге активируется проли­ферация и окончательная дифференцировка антигенспецифичных клонов лимфоцитов и формирование иммунной памяти.

Помимо описанных выше антигенов гистосовместимости, идентифицирован III класс молекул МНС. Локус, содержащий кодирую­щие их гены, вклинивается между I и II клас­сом и разделяет их. К МНС III класса относят­ся некоторые компоненты комплемента (С2, С4), белки теплового шока, факторы некроза опухоли и др.

 

10.1.4.3. Опухольассоциированные антигены

Первые указания на наличие в опухолях специфических антигенов датируются 40-ми годами XX в. В 1948-1949 гг. Л. А. Зильбер, видный отечественный микробиолог и имму­нолог, при разработке вирусной теории рака доказал существование антигена, специфич­ного для опухолевой ткани. Позже, в 60-х годах XX в., Г. И. Абелев (в опытах на мышах) и Ю. С. Татаринов (при обследовании лю­дей) обнаружили в сыворотке крови больных первичным раком печени эмбриональный вариант сывороточного альбумина — альфа-фетопротеин. К настоящему моменту опухольассоциированные антигены обнаружены и охарактеризованы для многих опухолей, и были даже клонированы их гены. Однако не все опухоли содержат специфические мар­керные антигены, и не все маркеры обладают строгой тканевой специфичностью.

Опухольассоциированные антигены класси­фицируют по локализации и генезу. По место­нахождению различают сывороточные, секре-тируемые опухолевыми клетками в межклеточ­ную среду, и мембранные. Последние получили название опухолеспецифических транспланта­ционных антигенов, или TSTA (аббр. от англ. Tumorspecific transplantation antigen).

В зависимости от природы выделяют вирусные, эмбриональные, нормальные гиперэкспрессируемые и мутантные антигены, ассоции­руемые с опухолями. Вирусные опухольассо­циированные антигены, по сути, являются белками онковирусов. Эмбриональные антигены в норме синтезируются в зародышевом периоде. Это, например, альфа-фетопротеин (см. выше); нормальный протеин тестикул, MAGE 1, 2, 3 и др. — маркеры нормальных семенников, а также меланомы, рака молочной железы и пр.; хорионический гонадотропин — в норме синтезируется в плаценте, а также при хориокарциноме и других опухолях. В меланоме в большом количестве синтезируется нормальный фермент тирозиназа.

Из мутантных белков следует отметить характерный для многих опухолей протеин Ras — ГТФ-связывающий белок, участвующий в трансмембранном проведении сигнала. Маркерами рака молочной и поджелудочной желез, карцином кишечника являются модифицированные муцины (MUC 1, 2 и др.).

Из общих свойств опухольассоциированных антигенов необходимо отметить, что в боль­шинстве своем они представляют собой продукты экспрессии генов, в норме включаемых только в эмбриональном периоде. Они являются слабыми иммуногенами, хотя в отдельных случаях могут индуцировать реакцию цитоток-сических Т-лимфоцитов (Т-киллеров) и рас­познаваться в составе молекул МНС (HLA) I класса. Направленные против опухольассоциированных антигенов специфические антитела, в сущности, не угнетают рост опухолей, а, наоборот, вызывают иммунодепрессию.

10.1.4.4. CD-антигены

На мембране клеток обнаруживаются груп­повые антигены, объединяющие клетки, име­ющие сходные морфофункциональные харак­теристики или находящиеся на определенной стадии развития. Эти маркерные молекулы получили название антигенов кластеров диф-ференцировки клетки, или CD-антигенов (аббр. от англ. Cell Differentiation Antigens, или Claster Definition). По структуре они пред­ставляют собой гликопротеиды, многие из которых относятся к суперсемейству иммуноглобулинов. CD-антигены используют для выявления отличий в группах клеток, из которых наиболее широкое распространение получи­ли маркеры иммунокомпетентных клеток. Например, CD3 экспрессируется на популяции Т-лимфоцитов, CD4 характерен для субпопуляции Т-хелперов, a CD8 — цитотоксических Т-лимфоцитов Т-киллеров, CDlla обнаруживается на цитоплазмати­ческих мембранах моно- и гранулоцитов, а CDllb — на естественных киллерах. CD19 — 22 являются маркерами В-лимфоцитов.

Список CD-маркеров довольно обшир­ный, он насчитывает около 200 вариантов. Основные CD-маркеры клеток, участвующих в иммунном ответе, представлены в табл. 10.1. Информация о структуре закодирована в различных участках генома, а экспрессия зависит от стадии дифференцировки клетки и ее функционального состояния. CD-антигены имеют диагностическое значение в клинике иммунодефицитных состо­яний, а также в научно-исследовательской работе. Типирование CD-маркеров осущест­вляется в серологических реакциях с использованием моноклональных антител (реакция иммунофлюоресценции, цитотоксический тест и др.).

 

10.1.5. Антигены микробов

В структуре микробов определяется несколько типов антигенов. При этом анти­генный состав микроба во многом зависит от его эволюционного и таксономического положения. Принципиальные различия име­ют антигены бактерий, вирусов, грибов и простейших. Вместе с тем микробные антигены могут быть общими для отдельных систематичес­ких категорий. Так, существуют антигены, характерные для целых семейств, родов и видов. Внутри видов могут быть выделены серологические группы (серогруппы), варианты (серовары) или типы (серотипы). Антигены микробов используют для получения вакцин и сывороток, необходимых для диагностики, профилактики и лечения инфекционных или аллергических заболеваний, а также в диа­гностических реакциях.

 

10.1.5.1. Антигены бактерий

В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены (рис. 10.2). Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий — их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-ан-тиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства — он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Если проиммунизировать животное жи­выми бактериями, имеющими жгутики, то будут вырабатываться антитела, направлен­ные одновременно против О- и Н-антигенов. Введение животному прокипяченной куль­туры стимулирует биосинтез антител к со­матическому антигену. Культура бактерий, обработанная фенолом, вызовет образование антител к жгутиковым антигенам.

Капсульные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 °С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секрети-руются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц — так называемого отечного и летального факторов.

 

10.1.5.2. Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов: ядерные (или коровые), капсидные (или оболочечные) и суперкапсидные. На поверхности некоторых вирусных частиц встречаются особые V-антигены — гемагглютинин и фермент нейраминидаза. Антигены вирусов различаются по происхождению. Часть из них — вирусоспецифические. Информация об их строении картирована в нуклеиновой кислоте вируса. Другие антигены вирусов являются компо­нентами клетки хозяина (углеводы, липиды), они захватываются во внешнюю оболочку ви­руса при его рождении путем почкования.

Антигенный состав вириона зависит от строения самой вирусной частицы. Антигенная специфичность простоорганизованных виру­сов связана с рибо- и дезоксирибонуклеопро-теинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены (от лат. solutioраствор). У сложноорганизованных вирусов часть антигена связана с нуклеокапсидом, а другая — локализуется во внешней оболочке — суперкапсиде.

Антигены многих вирусов отличаются вы­сокой степенью изменчивости. Это связано с постоянным мутационным процессом, кото­рый претерпевает генетический аппарат вирус­ной частицы. Примером могут служить вирус гриппа, вирусы иммунодефицитов человека.

 

10.1.6. Процессы, происходящие с антигеном в макроорганизме

Процесс проникновения антигена и его кон­такт с иммунной системой протекают поэтапно и имеют свою динамику во времени. При этом на каждом этапе появления и распространения в макроорганизме антиген сталкивается с мощ­ным противодействием развитой сети разнооб­разных факторов иммунитета (см. табл. 9.3).

Существуют разнообразные пути проник­новения и распространения антигена в макроорганизме. Они могут появляться внутри самого макроорганизма (эндогенное происхождение) или поступать извне (экзогенное происхождение). Экзогенное происхождение предполагает, что антиген может проникнуть в макроорганизм:

  • через дефекты кожных покровов и сли­зистых (как результат ранений, микротравм, укусов насекомых, расчесов и др.);
  • путем всасывания в желудочно-кишечном тракте (эндоцитоз эпителиальными клетками);
  • межклеточно (при незавершенном фа­гоцитозе, облигатном или факультативном внутриклеточном паразитировании микроб может разноситься по всему организму);

4) чресклеточно (так распространяются облигатные внутриклеточные паразиты, например, вирусы).

В организме антиген разносится лимфой (лимфогенный путь) и кровью (гематогенный путь) по различным органам и тканям. При этом он распределяется не хаотично — анти­ген чаще всего фильтруется в лимфатических узлах, а также в лимфоидной ткани печени, селезенки, легких и других органов, где вступает в контакт с разнообразными факторами иммунной защиты. Ответная реакция этих факторов заключа­ется в инактивации и удалении (элимина­ции) антигена из макроорганизма. Первыми вступают в действие факторы врожденного иммунитета, так как эта система, несмотря на ее многообразие и сложность отдельных ее компонентов, не требует длительного времениря активации. Если антиген не был инактивирован или элиминирован в течение 4 ч, в активную работу включается система факторов приобретенного иммунитета. Эффективность их действия обеспечивается путем специфического распознавания «свой-чужой» и выработки соответствующих факторов регуляции и иммунной защиты (специфические антитела, ионы антигенореактивных лимфоцитов).

Совокупный эффект всех звеньев и уровней иммунной защиты макроорганизма, независимо от степени их вовлечения в процесс, направлен на:

1) связывание и блокирование биологически активных участков молекулы антигена; 2) разрушение или отторжение антигена;

3) полную утилизацию, изоляцию (инкап­суляции) или выведение остатков антигена из макроорганизма.

В итоге достигается полное или частич­ное восстановление гомеостаза. Параллельно формируется иммунная память, толерант­ность или аллергия.

 

10.2. Иммунная система человека

Для осуществления специфической функ­ции надзора за генетическим постоянством внутренней среды, сохранения биологичес­кой и видовой индивидуальности в организме человека существует иммунная система. Эта система достаточно древняя, ее зачатки обна­ружены еще у круглоротых.

Принцип действия иммунной системы основан на распознавании «свой-чужой», а также постоянной рециркуляции, воспроизводстве и взаимодействии ее клеточных элементов.

 

10.2.1. Структурно-функциональные элементы иммунной системы

Иммунная система — это специализированная, анатомически обособленная лимфоидная ткань. Она разбросана по всему организму в виде различных лимфоидных образований и отдельных клеток. Суммарная масса этой ткани составляет 1-2 % от массы тела. В ана­томическом плане иммунная система под­разделена на центральные и периферические органы. К центральным органам иммунитета относятся костный мозг и тимус (вилочковая железа), к периферическим — лимфатические узлы, скопления лимфоидной ткани (группо­вые фолликулы, миндалины), а также селе­зенку, печень, кровь и лимфу.

С функциональной точки зрения можно вы­делить следующие органы иммунной системы:

  • воспроизводства и селекции клеток им­мунной системы (костный мозг, тимус);
  • контроля внешней среды или экзогенной интервенции (лимфоидные системы кожи и слизистых);
  • контроля генетического постоянства внутренней среды (селезенка, лимфатические узлы, печень, кровь, лимфа).

Основными функциональными клетками являются лимфоциты. Их число в организме достигает 1012. Кроме лимфоцитов, к числу фун­кциональных клеток в составе лимфоидной ткани относят мононуклеарные и гранулярные лейкоциты, тучные и дендритные клетки. Часть клеток сосредоточена в отдельных органах им­мунной системы, другие — свободно перемеща­ются по всему организму. Схематическое строе­ние иммунной системы приведено на рис. 10.3.

 

10.2.1.1. Центральные органы иммунной системы

Центральными органами иммунной системы являются костный мозг и вилочковая железа (тимус). Это органы воспроизведения и се­лекции клеток иммунной системы. Здесь про­исходит лимфопоэз — рождение, размножение (пролиферация) и дифференцировка лимфо­цитов до стадии предшественников или зре­лых неиммунных (наивных) клеток, а также их «обучение». Внутри тела человека эти органы имеют как бы центральное расположение.

У птиц к центральным органам иммунной системы относят сумку Фабрициуса (bursa Fabricii), локализованную в области клоаки. В этом органе происходит созревание и размножение популяции лимфоцитов — проду­центов антител, вследствие чего они получили название В-лимфоциты (см. разд. 10.2.1.3.1.1). У млекопитающих этого анатомического об­разования нет, и его функции в полной мере выполняет костный мозг. Однако традиционное название «В-лимфоциты» сохранилось.

Костный мозг локализуется в губчатом веществе костей (эпифизы трубчатых костей, грудина, реб­ра и др.). В костном мозге находятся полипотентные стволовые клетки, которые являются родо­начальницами всех форменных элементов крови и, соответственно, иммунокомпетентных клеток. В стреме костного мозга происходит дифферен­цировка и размножение популяции В-лимфоци-тов, которые затем разносятся по всему организму кровотоком. Здесь же образуются предшественники лимфоцитов, которые впоследствии мигри­руют в тимус, — это популяция Т-лимфоцитов. Фагоциты и некоторые дендритные клетки также образуются в костном мозге. В нем можно обна­ружить и плазматические клетки. Они образуются на периферии в результате терминальной диффе-ренцировки В-лимфоцитов, а затем мигрируют назад, в костный мозг.

Вилочковая железа, или тимус, или зобная же­леза, располагается в верхней части загрудин-ного пространства. Этот орган отличает особая динамика морфогенеза. Тимус появляется в период внутриутробного развития. К моменту рождения человека его масса составляет 10-15 г, окончательно он созревает к пятилетнему возрасту, а максимального размера достигает к 10-12 годам жизни (масса 30-40 г). После периода полового созревания начинается инволюция органа — происходит замещение лимфоидной ткани жировой и соединительной.

Тимус имеет дольчатое строение. В его структуре различают мозговой и корковый слои. В строме коркового слоя находится большое количество эпителиальных клеток коры, названных «клетки-няньки», которые своими отростками образуют мелкоячеистую сеть, где располагаются «созревающие» лимфоциты. В пограничном, корково-мозговом слое располагаются дендритные клетки ти­муса, а в мозговом — эпителиальные клетки мозгового слоя.

Предшественники Т-лимфоцитов, которые образовались из стволовой клетки в костном мозге, поступают в корковый слой тимуса. Здесь под влиянием тимических факторов они активно размножаются и дифференциру­ются (превращаются) в зрелые Т-лимфоциты, а также «учатся» распознавать чужеродные антигенные детерминанты.

Процесс «обучения» состоит из двух этапов, разделенных по месту и времени, и включает «положительную» и «отрицательную» селекцию. Критерием «обученности» является качество Т-клеточной антигенной рецепции (специфичность и аффинность) и жизнеспособность клетки.

«Положительная» селекция происходит в корковом слое при помощи эпителиальных клеток. Суть ее заключается в «поддержке» клонов Т-лимфоцитов, рецепторы которых эффективно связались с экспрессированны-ми на эпителиальных клетках собственными молекулами МНС, независимо от структуры

инкорпорированных собственных олигопеп-тидов. Активировавшиеся в результате кон­такта клетки получают от эпителиоцитов ко­ры сигнал на выживание и размножение (ростовые факторы тимуса), а нежизнеспособные ии ареактивные клетки погибают. «Отрицательную» селекцию осуществляют дендритные клетки в пограничной, корково-мозговой зоне тимуса. Ее основная цель — «выбраковка» аутореактивных клонов Т-лим­фоцитов. Клетки, позитивно реагирующие на комплекс МНС-аутологичный пептид, под­вергаются уничтожению путем индукции у них апоптоза. Итоги селекционной работы в тимусе весь «адраматичны: более 99 % Т-лимфоцитов не выдерживают испытаний и погибают. Лишь менее 1 % клеток превращается в зрелые не­иммунные формы, способные распознать в комплексе с аутологичными МНС только чужеродные биополимеры. Ежесуточно около 10* зрелых «обученных» Т-лимфоцитов покидают тимус с крово- и лимфотоком и мигри­руют в различные органы и ткани.

Созревание и «обучение» Т-лимфоцитов в тимусе имеют важное значение для формирования иммунитета. Отмечено, что эссенциальное отсутствие или недоразвитие тимуса ведет к резкому снижению эффективности иммунной защиты макроорганизма. Такое явление наблюдается при врожденном дефекте развития вилочковой железы — аплазии или гипоплазии органа (см. разд. 12.4), ее хирургическом удале­нии или радиационном поражении в детском или юношеском возрасте. Между тем тимэктомия у взрослых практически не приводит к серьезным дефектам в иммунитете.

 

10.2.1.2. Периферические органы иммунной системы

К периферическим органам иммунной сис­темы относят селезенку, аппендикс, печень, мин­далины глоточного кольца, групповые лимфоидные фолликулы, лимфатические узлы, кровь, лимфу и др. В этих органах локализуются иммуноком-петентные клетки, которые непосредственно осуществляют иммунный надзор. Здесь также проходит иммуногенез — размножение и окон­чательная дифференцировка их предшествен­ников. В функциональном плане перифери­ческие органы иммунной системы могут быть подразделены на органы контроля жидких сред организма (лимфатические узлы, селезенка), контроля его кожных и слизистых покровов (лим­фатические фолликулы) и контроля внутренней среды (тканевые мигрирующие клетки).

Лимфатические узлы — мелкие округлые анатомические образования бобовидной фор­мы, которые располагаются по ходу лимфатических сосудов. Каждый участок тела имеет регионарные лимфоузлы. В общей сложности в организме человека насчитывается до 1000 лимфоузлов. Лимфатические узлы выполня­ют функцию биологического сита — через них фильтруется лимфа, происходящая из всех покровных тканей, задерживаются и концент­рируются антигены. Через лимфоузел прохо­дит в среднем около 109 лимфоцитов в час.

В строении лимфоузла различают корковое и мозговое вещество. Соединительно-тканными трабекулами кора разделена на сектора. В ней выделяют поверхностный корковый слой и паракортикальную зону. В секторах поверх­ностного коркового слоя расположены лим­фатические фолликулы с центрами размноже­ния В-лимфоцитов (герминативные центры). Здесь же обнаруживаются фолликулярные де­ндритные клетки, способствующие созреванию В-лимфоцитов. Паракортикальный слой — это зона Т-лимфоцитов и интердигитальных де­ндритных клеток, потомков клеток Лангерганса. Мозговое вещество образовано тяжами соеди­нительной ткани, между которыми располага­ются макрофаги и плазматические клетки.

В пределах лимфоузла происходит антиген­ная стимуляция иммунокомпетентных кле­ток и включается система специфического иммунного реагирования, направленная на обезвреживание антигена.

Селезенка — это орган, через который фильтруется вся кровь. Располагается в ле­вой подвздошной области и имеет дольчатое строение. Лимфоидная ткань образует белую пульпу. В ее строении различают первичные лимфоидные фолликулы, которые окружают артерии по их ходу, и вторичные, располага­ющиеся на границах первичных фолликулов. Периартериальные лимфоидные скопления преимущественно заселены Т-лимфоцитами, а вторичные — В-лимфоцитами и плазма­тическими клетками. Кроме того, в строме селезенки обнаруживают фагоциты и ретику­лярные дендритные клетки.

В селезенке, как в сите, задерживаются антигены, оказавшиеся в кровотоке, сорби­рованные не эритроцитах и «состаривши­еся» эритроциты. Поэтому этот орган еще называют «кладбищем эритроцитов». Здесь происходит антигенная стимуляция имму­нокомпетентных клеток, развитие специфи­ческой иммунной реакции на антиген и его обезвреживание.

Печень играет особую роль в иммунной системе. В ней находится более половины всех тканевых макрофагов и большая часть естественных киллеров. Лимфоидные попу­ляции печени обеспечивают толерантность к пищевым антигенам, а макрофаги утилизиру­ют иммунные комплексы, в том числе сорби­рованные на «стареющих» эритроцитах.

Групповые лимфатические фолликулы (пейе-ровы бляшки) являются скоплением лимфоидной ткани в слизистой оболочке тонкой кишки. Такие образования также находятся в червеобразном отростке слепой кишки — аппендиксе. Кроме того, на всем протяже­нии желудочно-кишечного тракта, начиная с пищевода и кончая анальным отверстием, располагаются единичные лимфатические фолликулы. Они обеспечивают местный им­мунитет слизистой кишки и ее просвета и регулируют видовой и количественный состав ее микрофлоры.

Скопление лимфоидных элементов в виде миндалин глоточного кольца обеспечивает мес­тный иммунитет в носоглотке, ротовой полос­ти и верхних дыхательных путях, защищает их слизистые от внедрения микробов и других генетически чужеродных агентов воздушно-капельным или воздушно-пылевым путем и регулирует локальную нормофлору.

Лимфа — жидкая ткань организма, кото­рая содержится в лимфатических сосудах и узлах. Она включает в себя все соединения, поступающие из межтканевой жидкости. Основными и практически единственными клетками лимфы являются лимфоциты. В ее составе эти клетки осуществляют кругооборот в организме.

Кровь. В ней циркулируют предшественники и зрелые Т- и В-лимфоциты, полиморфноядерные лейкоциты, моноциты. Лимфоциты составляют 30 % от общего числа лейкоцитов. Одномоментно в крови присутствует менее 2 % от общего числа лимфоцитов.

 

10.2.1.3. Клеточные популяции иммунной системы

Специфическую функцию иммунной защиты непосредственно осуществляет многочисленный пул клеток миелоидного и лимфоидного ростков крови: лимфоциты, фагоциты и дендритные клетки. Это основные клетки иммунной системы. Кроме них в иммунный ответ может вовлекаться множество других клеточных популяций (эпителий, эндотелий, фибробласты и др.). Перечисленные клетки различаются не только морфологически, но и по своей функциональной направленности, по маркерам (специфические молекулярные метки), по рецепторному аппарату и продуктам биосинтеза. Тем не менее большую часть клеток иммунной системы объединяет близкое генетическое родство — они име­ют общего предшественника, полипотентную стволовую клетку костного мозга (рис. 10.4).

 

На поверхности цитоплазматической мем­браны клеток иммунной системы существуют особые молекулы, которые служат их мар­керами. С помощью специфических антител против этих молекул удалось разделить клет-шнаотдельные субпопуляции. В 1980-х годах была принята международная номенклатура мембранных маркеров лейкоцитов человека. Они получили название CD-антигены (аббр. от англ. Cluster of Differentiation, или Definition). В настоящее время важнейшие субпопуляции веток иммунной системы идентифицируют серологически при помощи моноклональных антител или в генетическом анализе.

По функциональной активности клетки-участники иммунного ответа подразделяют на регуляторные (индукторные), эффектор-ные и АПК. Регуляторные клетки управляют функционированием компонентов иммунной системы путем выработки медиаторов — иммуноцитокинов и лигандов. Эти клетки оп­ределяют направление развития иммунного реагирования, его интенсивность и продол­жительность. Эффекторы являются непос­редственными исполнителями иммунной защиты. Они воздействуют на объект ли­бо непосредственно, либо путем биосинтеза биологически активных веществ со специ­фическим эффектом (антитела, токсические субстанции, медиаторы и пр.).

ЛПК выполняют несложную, но очень от­ветственную задачу. Они захватывают, про-цессируют (перерабатывают путем ограни­ченного протеолиза) и представляют антиген иммунокомпетентным клеткам (Т-хелперам) в составе комплекса с МНС II класса. АПК лишены специфичности в отношении самого антигена. За счет спонтанной сорбции моле­кула МНС II класса может включать в себя любые эндоцитированные олигопептиды, как свои собственные, так и чужие. Установлено, что большая часть комплексов МНС II класса содержит аутогенные молекулы и лишь малая доля — чужеродный материал.

Наличие на мембране МНС II класса является обязательным, но не единственным признаком АПК. Для осуществления профессиональной деятельности необходима экспрессия ко-стимулирующих факторов(CD40, 80, 86), а также множества молекул адгезии.

Последние обеспечивают тесный, про­странственно стабильный и продолжитель­ный контакт АПК с Т-хелпером. Помимо МНС II класса АПК экспрессируют молекулы CD1. С их помощью клетки могут презентаровать липосодержащие или полисахаридные антигены.

Наиболее типичными АПК, относящимися к разряду «профессиональных», являются (по активности) дендритные клетки костномоз­гового происхождения, В-лимфоциты и мак­рофаги. Дендритные клетки почти в 100 раз эффективнее макрофагов. Функцию «непро­фессиональных» АПК могут также выполнять некоторые другие клетки в состоянии актива­ции — это, в первую очередь, эпителиальные и эндотелиоциты.

Осуществление целенаправленной функ­ции по иммунной защите макроорганизма возможно благодаря наличию на клетках им­мунной системы специфических антигенных рецепторов (иммунорецепторов). По меха­низму рецепции они подразделяются на прямые и непрямые. Прямые иммунорецепторы непосредственно связываются с молекулой антигена. Так функционируют антигенспеци-фические рецепторы большинства субпопу­ляций лимфоцитов. Непрямые иммунорецеп­торы взаимодействуют с молекулой антигена опосредованно — через Fc-фрагмент молеку­лы иммуноглобулина (см. разд. 11.1.2). Это так называемый Fc-рецептор (FcR).

Существуют особенности в механизме ре­цепции в зависимости от аффинности FcR. Высокоаффинный рецептор может связываться с интактными молекулами IgE или IgG4 и обра­зовывать рецепторный комплекс, в котором ан-тигенспецифическую ко-рецепторную функцию выполняет молекула иммуноглобулина. Такой рецептор есть у базофилов и тучных клеток. Низкоаффинный FcR «распознает» молекулы иммуноглобулина, уже образовавшие иммунные комплексы. Это самый распространенный тип FcR, который обнаруживается на макро­фагах, естественных киллерах, эпителиальных, дендритных и множестве других клеток.

Иммунное реагирование основано на тесном взаимодействии различных клеточных популяций. Это достигается при помощи биосинтеза клетками иммунной системы широко­го спектра иммуноцитокинов. Подавляющее большинство клеток иммунной системы постоянно перемещается во внутренних средах организма, широко используя возможности лимфатической и кровеносной систем, а также свои функциональные возможности.

Клеточно-элементныйсоставиммунной системы постоянно возобновляется. Состарившиеся, выработавшие свой биологический ресурс, ложно активированные, зараженные и генетически трансформированные клетки уничтожаются. Клеточный дефицит восполняется за счет деления стволовых клеток.

 

10.2.1.3.1. Лимфоциты

 

Лимфоциты — подвижные мононуклеарные клетки. Они имеют определенные морфологические особенности и отличаются онтогенезом и функциональной принадлежностью. В зависимости от места созревания в организме, эти клетки подразделяются на две гетерогенные популяции Т- (тимус) и В- (бурса Фабрициуса, костный мозг) лимфоцитов.

Лимфоциты играют ключевую роль в обеспечении приобретенного (адаптивного) иммунитета. Они осуществляют специфическое распознавание антигена, индукцию клеточного и гуморального иммунного ответов, различные формы иммунного реагирования.

В организме непрерывно идет рециркуля ция и возобновление популяций лимфоцитов. С крово- и лимфотоком, а также за счет амебоидной подвижности клетки активно мигрируют между различными органами и тканями. Вместе с тем миграция и расселение лимфоцитов в тканях не являются хаотическими процессами. Они имеют направленный характер и строго регулируются рядом факторов, в том числе обусловлены экспрессией на мембране и лимфоцитов, эндотелия сосудов и клеточных элементах стромы особых молекул адгезии (интегрины, селектины и пр.)- Так, незрелые Т-лимфоциты активно мигрируют в тимус. Зрелые неиммунные («наивные») лимфоциты тропны к периферическим лимфоидным ор­ганам и тканям. При этом Т- и В-лимфоциты заселяют только «свои» области — это так называемый эффект «хоминговой рецепции» (от англ. homeдом). Зрелые иммунные (активированные) лимфоциты распознают эпителий в очаге воспаления. Клетки имму­нологической памяти всегда возвращаются в места своего происхождения, юдолжительность жизни неиммунных эк достаточно большая. У Т-лимфоцитов постигает нескольких месяцев или лет, а у еток — недель или месяцев. Дольше всех т клетки иммунологической памяти (см. . 11.5) — до 10 лет и более. Однако активи-нные или терминально дифференцирован-лимфоциты имеют короткую продолжи­мость жизни (несколько суток). Клеточный щит постоянно восполняется за счет проеративных процессов, как в центральных нах иммунной системы, так и в перифееских лимфоидных образованиях, и регу-уется ростовыми факторами клеток самой иммунной системы. Численность лимфоидных ряций находится под жестким контролем, ирившиеся, ложно активированные и ау-еактивные (реагирующие на аутоантигены) фциты подвергаются уничтожению путем рции у них апоптоза. Для выполнения специфической функции ифоциты несут на своей поверхности пря-ie антигенные рецепторы. Поэтому лим-щиты являются иммунокомпетентными иками. Иммунорецептор В-лимфоцита iCR- от англ. B-cell receptor) и особого iT-лимфоцита распознают нативный эпи-щ, т. е. отличают собственно чужеродные станции. Иммунорецептор традиционного •лимфоцита (TCR — от англ. Т-cell гесер-й) ориентирован на олигопептиды в составе |НС,т. е. распознают «измененное свое». Антигенспецифические рецепторы лимфо­цитов имеют сложное молекулярное стро­ек, уникальное для каждой клетки. Они ктоят из нескольких полипептидных субъединиц, имеющих полигенное кодирование. Например, число генов, детерминирующих структуру V-области (вариабельный участок, ответственный за специфическое распознава­ние), в незрелой клетке достигает 100. При со­зревании лимфоцита в V-генах возникают пе­рестройки. В результате рекомбинационных процессов образуется бесконечно большое число вариантов антигенной специфичности рецептора, которое достигает 1012, что сопос­тавимо с общей численностью лимфоидных популяций.

В итоге в организме постоянно содержатся лимфоциты с широким «репертуаром» специфи­ческой направленности, готовые в любой момент ответить защитной реакцией на любой возмож­ный антиген. Появляющиеся случайно клоны, реактивные к антигенам собственного организ­ма, элиминируются на ранних этапах развития. Поэтому различают «первичный» и «вторичный антигенраспознающий репертуар» лимфоидных популяций. «Первичный» — представляет со­бой совокупный набор рецепторных специ-фичностей, формирующийся при созревании лимфоцитов в какой-либо особи. «Вторичный, или клональный, репертуар» является совокуп­ностью вариантов рецептора после отбраковки аутореактивных клонов клеток.

Антигенспецифическая рецепция в лимфо­цитах имеет стандартные механизмы реали­зации. Полученный внеклеточной частью ре­цептора сигнал от взаимодействия с антигеном передается по трансмембранному участку на его внутриклеточную часть, которая уже акти­вирует некоторые внутриклеточные ферменты (тирозинкиназу, фосфорилазу и др.).

Для запуска продуктивной реакции лимфо­цита необходима суммация сигнала от его анти-генспецифических рецепторов, что достигается агрегацией последних. Кроме того, для стаби­лизации рецептор-лигандного взаимодействия и восприятия ко-стимулирующего сигнала тре­буются вспомогательные молекулы.

Среди лимфоцитов встречаются клетки без отличительных признаков Т- и В-лимфоци-тов. Они получили название нулевых клеток. В костном мозге на их долю приходится около 50 % всех лимфоцитов, а в крови — пример­но 5 %. Функциональная активность остается неясной.

 

10.2.1.3.1.1. В-лимфоциты

В-лимфоциты — это преимущественно эф-фекторные иммунокомпетентные клетки, на долю которых приходится около 15 % всей численности лимфоцитов. Выделяют две субпопуляции В-лимфоцитов: «обычные» В-клетки, не имеющие маркера CD5, и CD5+ В1-лимфоциты.

При электронной микроскопии В-лимфо­циты имеют шероховатую поверхность, на которой определяются маркеры CD 19—22 и некоторые другие. Функцию антигенспе-цифического рецептора (BCR) выполняют особые мембранные формы иммуноглобули­нов. Клетки экспрессируют МНС II класса, ко-стимулирующие молекулы CD40, 80, 86, низкоаффинные FcR (к иммунным комплексам и нативным молекулам иммуноглобулина класса G), рецептор к эритроцитам мыши, иммуноцитокинам и др.

Зрелые В-лимфоциты и их потомки — плаз­матические клетки (плазмоциты) являются антителопродуцентами. Их основным продуктом являются иммуноглобулины. Кроме того, В-лимфоциты являются профессиональными АПК. Они участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Дифференцировка и созревание В-лимфоцитов (рис. 10.5) происходят сначала в кос­тном мозге, а затем в периферических органах иммунной системы, куда они отселяются на стадии предшественников. Потомками В-лимфоцитов являются клетки иммунологической памяти и плазматические клетки. Основные морфологические признаки последних — обширная цитоплазма, развитый эндоплазматический ретикулум и аппарат Гольджи с большим количеством рибосомИ Активно синтезирующий плазмоцит живет недолго, не более 2—3 суток.

В1-лимфоциты считают филогенетически наиболее древней ветвью антителопродуцирующих клеток. Предшественники этих клеток очень рано мигрируют в ткани слизистыш где автономно от центральных органов иммунной системы поддерживают численности своей популяции. Клетки несут на своей мембране маркер CD5. Они синтезируют низко аффинные IgA и IgM к полисахаридным и лив пидным антигенам микробов и обеспечивакш иммунную защиту слизистых от условно-пя тогенных бактерий.

Функциональной активностью В-лимфоцитов управляют растворимые антигены щ иммуноцитокины Т2-хелпера, макрофага н| других клеток, например ИЛ-4, 5, 6.

 

10.2.1.3.1.2. Т-лимфоциты

Т-лимфоциты—это сложная по составу группа клеток, которая происходит от полипотентнои стволовой клетки костного мозга, а созревави дифференцируется в тимусе из предшествен­ников (пре- Т-лимфоциты). На долю этих клеток приходится около 75 % всей лимфоидной по­пуляции. Отмечено, что на электроннограмме все Т-лимфоциты имеют гладкую поверхность, их общим маркером является CD3, а также ре­цептор к эритроцитам барана. В зависимости от строения Т-клеточного антигенного рецептора (TCR) и функциональной направленности со­общество Т-лимфоцитов может быть разделено на отдельные группы.

Различают два типа TCR: а(3 и уб. Первый тип — гетеродимер, который состоит из двух полипептидных цепей — а и |3; он характерен для традиционных Т-лимфоцитов, известных как Т-хелперы и Т-киллеры. Второй тип об­наруживается на поверхности особой популя­ции убТ -лимфоцитов.

Профессионально Т-лимфоциты также разделяются на две субпопуляции: иммуно-регуляторы и эффекторы. Задачу регуляции иммунного ответа (в основном активирую­щую) выполняют Т-хелперы. Предполагалось существование Т-супрессоров, которым при­писывали функцию торможения развития иммунной реакции (супрессия). Однако до сих пор клетка морфологически не иден­тифицирована, хотя сам супрессорный эффект существует. Эффекторную функцию осуществляют цитотоксические лимфоциты: Т-киллеры и естественные киллеры. • В организме Т-лимфоциты обеспечивают «точные формы иммунного ответа (гипер­чувствительность замедленного типа, транс­плантационный иммунитет, противоопухо­левый иммунитет и т. д.), определяют силу и продолжительность иммунной реакции. Их созреванием, дифференцировкой и активнос­тью управляют цитокины.

 

10.2.1.3.1.2.1. Т-хелперы

Т-хелперы, или Т-помощники, — субпопуция Т-лимфоцитов, которые выполняют регуляторную функцию. На долю этих клеток приходится около 75 % всей популяции Т-лимфоцитов. На наружной поверхности их цитолазматической мембраны определяют а молекулы CD4, а также a(3TCR к антигену, представленному в комплексе с МНС II класса. При помощи специфического рецептора

Рис. 10.6. Схема дифференцировки Т-хелпера: Тх — Т-хелпер; аМ — активированный макрофаг; Т-к — Т-киллер; аЕК — активированный естествен­ный киллер; Э — эозинофил; Б — базофил; Т— тучная клетка; у8Т— убТ-лимфоцит; ® — блокада дифферен­цировки

Т-хелпер анализирует информацию, переда­ваемую ему АПК.

 

Рецепция антигена Т-хелпером, т. е. анализ его чужеродное™, — это весьма сложный процесс, требующий высокой точности. Ему способствует множество факторов (рис. 10.6):

  • Молекула CD3, комплексирующая с TCR;
  • Ко-рецепторные молекулы CD4, имеющие сродство к молекулярному комплексу МНС II класса;
  • Молекулы адгезии, стабилизирующие межклеточный контакт;
  • Рецепторы, взаимодействующие с ко-стимулирующими факторами АПК (CD28, 40L).

Продуктивная рецепция стимулирует Т-хелпер к продукции широкого спектра им-муноцитокинов, при помощи которых он управляет биологической активностью множес­тва клеток, вовлеченных в иммунный ответ.

Установлена гетерогенность популяции Т-хелперов. Активированный CD4+ Т-лим-фоцит (ТО-хелпер) дифференцируется в од­ного из своих потомков: Т1- или Т2-хелпер (рис. 10.7). Эта дифференцировка является альтернативной, ее направление определяют цитокиновые стимулы. Т1- или Т2-хелперы различаются лишь функционально — по спектру продуцируемых цитокинов.

Т1-хелпер образует ИЛ-2, -3, у-ИФН, фак­тор некроза опухолей (ФНО) и другие, необ­ходимые для развития клеточного иммунного ответа, гиперчувствительности замедленного типа, иммунного воспаления. Потребность в этой клетке определяет активированный макрофаг, естественный и Т-киллеры, синте­зирующие ИЛ-12 и у-ИФН.

Т2-хелпер продуцирует ИЛ-4,5,6,9,10,13 и др., которые поддерживают гуморальный иммунный ответ, а также гиперчувствительность немедленно­го типа. Дифференцировку в сторону Т2-хелпера потенцируют убТ-клетки, базофилы, тучные клет­ки и эозинофилы, синтезирующие ИЛ-4 и 13.

В организме поддерживается баланс Т1-/ Т2-хелперов. Он необходим для развития адекватного иммунного ответа. Сами клетки находят­ся в конкурентных взаимоотношениях, они оп-позитно тормозят клональное развитие друг дру­га. Установлено, что в организме новорожденных преобладают Т2-хелперы. Нарушение заселения желудочно-кишечного тракта нормальной мик- j рофлорой тормозит развитие субпопуляции Т1-1 хелперов и ведет к аллергизации организма.

 

10.2.1.3.1.2.2. Т-киллеры

Т-киллер — субпопуляция Т-лимфоцитов- | эффекторов. На их долю приходится пример­но 25 % всей популяции Т-лимфоцитов. На поверхности цитоплазматической мембраны Т-киллера определяются молекулы CD8, а I также сфТСЯ к антигену в комплексе с МНС I I класса, по которому «свои» клетки отличают- 1 ся от «чужих». В рецепции принимают учас­тие молекула CD3, комплексирующая с TCR, и ко-рецепторные молекулы CD8, тропныек I МНС I класса (рис. 10.8).

Т-киллер анализирует клетки собственного организма в поисках измененной, т. е. отлич­ной от собственной, структуры комплекса антиген—МНС I класса. Мутантные клетки, клетки, пораженные вирусом, или клетки аллогенного трансплантата несут на своей поверхности такие признаки генетической чужеродности. Поэтому они являются мишенью Т-киллера.

Т-киллер устраняет клетки-мишени путем антителонезависимой клеточно-опосредованной цитотоксичности (см. разд. 11.3.2), для чего синтезирует ряд токсических субстанций: перфорин, гранзимы и гранулизин.

Перфорин — токсический белок, который синтезируют цитотоксические лимфоциты — Т-киллеры и естественные киллеры. Обладает неспе-1 пифическим действием. Вырабатывается только зрелыми активированными клетками, незрелые неиммунные клетки перфорин не синтезируют.

Перфорин образуется в виде растворимого белка-предшественника и накапливается в цитоплазме в гранулах, которые сосредотачиваются около TCR, связавшегося с клеткой-мишенью. «Ориентированность» по TCR необходима для обеспечения локального, «адресного» эффекта — повреждения только пораженным или измененных клеток-мишеней.

Содержимое гранул высвобождается в yзкую щель, образованную тесным контактовцитотоксического лимфоцита и клетки-мише­ни. За счет гидрофобных участков перфорин встраивается в цитоплазматическую мембрану клетки-мишени, где в присутствии ионов Са2+ полимеризуется в трансмембранную пору диа­метром 16 нм. Образовавшийся дефект цитоп-лазматической мембраны подобно действию комплемента может вызвать осмотический ли­зис клетки-мишени (некроз) и/или обеспечить проникновение в нее гранзимов гранулизина. Гранзимы — это обобщающее название серино-вых протеаз, синтезируемых зрелыми активирован­ными цтотоксическими лимфоцитами. Различают три типа гранзимов: А, В и С. После синтеза гранзи­мы накапливаются в гранулах подобно перфорину и вместе с ним выделяются из клетки в синаптичес-кую щель. В клетку-мишень проникают через поры, образованные перфорином.

Мишенью для гранзимов являются внут­риклеточные специальные ферменты, ини­циирующие апоптоз, которые обладают ши­рокой нуклеазной активностью, в том числе разрушают нуклеиновые кислоты внутрикле­точных паразитов. Таким образом, гранзимы индуцируют гибель клетки путем апоптоза и санацию организма от зараженных клеток.

Гранулизин — эффекторное вещество с фер­ментативной активностью, синтезируемое цитотоксическими лимфоцитами. Способно запускать в клетках-мишенях апоптоз, пов­реждая мембрану их митохондрий. Т-киллер обладает огромным биологичес­ким потенциалом — его называют «серийным убийцей». За короткий срок он может уничто­жить несколько клеток-мишеней, затрачивая на каждую около 5 минут. Эффекторную фун­кцию Т-киллера стимулирует Т1-хелпер, хотя в ряде случаев его помощь не требуется. Т-киллеры обеспечивают в организме анти-телонезависимую клеточно-опосредованную цитотоксичность, формирование Т-клеточ-ной иммунологической памяти и гиперчувс­твительности замедленного типа. Кроме то­го, активированный Т-киллер синтезирует у-ИФН и ФНО, стимулирующие макрофаг и потенцирующие иммунное воспаление. 10.2.1.3.1.2.3. Естественные киллеры Естественные, или нормальные, киллеры (NK-клетки — аббр. от англ. Natural Killer) изначально были описаны как большие гра­нулярные лимфоциты, способные распознать в организме некоторые виды раковотранс-формированных клеток и уничтожить их без предварительной подготовки. Этот факт обус­ловил название клеток. Рецепторный аппарат и механизм действия естественных киллеров (ЕК) долгое время оставались неясными.

Сейчас установлено, что ЕК имеют морфоло­гию малых лимфоцитов, на их долю приходится около 15 % всех лимфоцитов. Они происходят из общей лимфоидной клетки-предшественницы, мигрируют с кровотоком, но отсутствуют в лимфе. Обнаруживаются в печени, селезенке, слизистых, матке. По маркерам, местам типичной локализа­ции и эффекторным механизмам выделяют две субпопуляции ЕК: «кровяную» и «тканевую».

ЕК — главный защитник макроорганизма от внутриклеточных паразитов. Он сраба­тывает задолго до активации адаптивного иммунитета. Вместе с тем, биологические возможности ЕК весьма ограниченны.

«Кровяные» ЕК — это активно циркулиру­ющие в кровотоке клетки. Обнаруживаются в красной пульпе селезенки. Несут на себе маркер CD16+CD56Ma™, низкоаффинный FcR к иммуног­лобулину класса G, связанному в иммунный ком­плекс, и рецептор к МНС I класса. При цитокино-вой активации синтезирует, накапливая в гранулах, перфорин, гранзимы и гранулизин. Эффекторная функция «кровяных» ЕК в отношении «меченных» иммуноглобулинами клеток реализуется в антите-лозависимой клеточно-опосредованной цитоток-сичности (см. разд. 11.3.1). «Мишенями» являют­ся клетки, инфицированные внутриклеточными паразитами (бактерии, вирусы, простейшие), и аллогенные клетки трансплантата.

Рецептор к МНС I класса анализирует плот­ность экспрессии этого маркера на мембране клетки. Дефицит этих молекул, наблюдаю­щийся при раковой трансформации клеток, также потенцирует цитотоксичность ЕК.

« Тканевые» ЕК ведут более оседлый образ жизни и обнаруживаются в большом количестве в пече­ни и децидаульной оболочке беременной матки. Несут маркер CD 16 CD56MHOro и много Fas-лиганда. Реализуемый эффекторный механизм — антителонезависимая клеточно-опосредованная цитотоксичность (см. разд. 11.3.2). Клетками-мишенями являются лимфоциты, активированные пищевы­ми антигенами или аллоантигенами плода.

Помимо цитотоксических функций, ЕК вырабатывают цитокины (ИЛ-5, -8, у-ИФН, ФИО, гранулоцит-моноцит-колониестимули-рующий фактор — ГМ-КСФ и др.), активи­рующие макрофагально-фагоцитарное звено, развитие иммунного ответа и иммунного воспа­ления. Эффекторная функция ЕК усиливается цитокинами (ИЛ-2, -4, -10, -12, у-ИФН и др.).

 

10.2.1.3.1.2.4. убТ-лимфоциты

Среди Т-лимфоцитов существует малочис­ленная популяция клеток с фенотипом, пре­имущественно CD4 CD8 , которые несут на своей поверхности особый TCR уб-типа. Это уЬТ-лимфоциты. Они практически полностью локализуются в эпидермисе и слизистой же­лудочно-кишечного тракта. Их общая числен­ность невелика — менее 1 % от общего пула Т-лимфоцитов, однако в покровных тканях может достигать 10 %.

Антигенный рецептор убТ-лимфоцита схо­ден с BCR, его активный центр непосредс­твенно связывается с эпитопом антигена. В отличие от а(3-типа, y5TCR не требует для рецепции процессинга антигена, а также его презентации в комплексе с молекулами МНС. Антигенные детерминанты могут быть пред­ставлены, например, молекулами CD1.

Иммунорецептор убТ-лимфоцита обладает узким «репертуаром» специфичности. Клетки ориентированы на распознавание некоторых широко распространенных микробных ан­тигенов (липопротеинов, белков теплового шока, бактериальных суперантигенов и др.). Клетки принимают участие в удалении патоге­нов на ранних этапах противоинфекционной защиты.

убТ-лимфоциты могут быть как эффекторны-ми, цитотоксическими клетками, так и регуля­торами иммунореактивности. Они синтезируют цитокины, активирующие местный иммунитет и локальную воспалительную реакцию, в том числе усиливают образование Т2-хелперов. Кроме того, уб-клетки продуцируют ИЛ-7 и контролируют тем самым численность собственной популяции.

Установлено, что убТ-лимфоциты проис­ходят из автономного ростка в покровных тканях, образованного стволовыми клетка­ми, мигрировавшими туда на ранних эта­пах эмбриогенеза. В созревании минуют ти­мус. Активируются клетками поврежденного эпителия ЖКТ и эпидермиса. Размножение уб-клеток усиливается под действием ИЛ-7.

10.2.1.3.2. Другие клетки иммунной системы

Помимо лимфоцитов, в развитии иммунного ответа участвует множество различных клеточных популяций, относящихся, в ос­новном, к миелоидному ростку. Особого внимания заслуживают гранулоциты, тучные и дендритные клетки.

Фагоциты (см. разд. 9.2.3.1) — самая мно­гочисленная фракция иммунокомпетентных клеток, гетерогенная по морфологическим свойствам. Обладают регуляторной и эффек-торной активностями. Вырабатывают им-муноцитокины, ферменты, ион-радикалы и другие биологически активные вещества, осуществляют вне- и внутриклеточный киллинг и фагоцитоз. Макрофаги обеспечивают переработку и представление антигена Т-хелперам.

Эозинофилы — гранулярные лейкоциты крови. Содержатся в крови, рыхлой соединительной ткани. В большом количестве накапливаются в очагах местных воспалений, вызванных гельминтами, и выполняют фунЛ цию киллеров (антителозависимая клеточно опосредованная цитотоксичность).

Эозинофилы несут на мембране низкоаффинные FcR к IgA или IgE, «распознающие» паразитов, «отмеченных» такими антителами, Активированная клетка выделяет ряд токсических субстанций, губительно действующих на гельминты:

  • ферменты (эозинофильная пероксидазаи коллагеназа);
  • белковые токсины (главный щелочной протеин, эозинофильный катионный белоки В нейротоксин).

Эозинофилы также синтезируют цитокины (ИЛ-3, -5, -8, ГМ-КСФ и др.), стимулируиИ щие клеточное звено иммунитета и образовав ние Т2-хелпера, и липидные медиаторы (леЛ котриены, тромбоцитактивирующий фаюоИ и др.), потенцирующие воспалительнуюреак-Я цию в месте внедрения гельминта. Тучные клетки — немигрирующие морфоло­гические элементы неясного происхождения, располагающиеся оседло вдоль барьерных тканей (lamina propria слизистых оболочек, в подкожной соединительной ткани) и в соеди­нительной ткани кровеносных сосудов. По на­бору синтезируемых биологически активных соединений и локализации выделяют две раз­новидности тучных клеток: клетки слизистых оболочек и клетки соединительной ткани.

Базофилы — гранулоциты, происходящие от костномозговой стволовой клетки. Имеют общую клетку-предшественник с эозинофи-лами, дифференцировка которых альтерна­тивно определяется цитокинами. Постоянно мигрируют с кровотоком, привлекаются в очаг воспаления анафилотоксинами (СЗа, С4а и С5а) и задерживаются там при помощи соответствующих хоминговых рецепторов.

Базофил и тучная клетка синтезируют сход­ный набор биологически активных веществ. Они вырабатывают, накапливая в гранулах, вазоактивные амины (гистамин у человека и серотонин у грызунов), сульфатированные глюкозаминогликаны (хондроитинсульфат, гепарин), ферменты (сериновые протеазы и др.), а также а-ФНО. В межклеточное про­странство клетки синтезируют лейкотриены (С4, D4, Е4), простагландины (PGD2, PGE2), цитокины (ИЛ-3, -4, -5, -13 и ГМ-КСФ) и фактор активации тромбоцитов. ‘ На поверхности базофил и тучная клетка несут высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фак­тор специфического взаимодействия с эпитопом аллергена. Эти клетки также экспрессируют низкоаффинный FcR к IgG в составе иммунного комплекса, который тормозит биологическую активность клеток. Базофил и тучная клетка активируются аллергенами, анафилотоксинами, I медиаторами активированных нейтрофилов, но-радреналином и другими веществами; ингиби-руются они иммунными комплексами. Связывание аллергена с рецепторным комп­лексом вызывает дегрануляцию базофила и туч­ной клетки—залповый выброс биологически ак­тивных соединений, содержащихся в гранулах, в межклеточное пространство, которые вызывают развитие гиперчувствительности немедленного типа (аллергической реакции I типа).

Базофил и тучная клетка стимулируют кле­точное звено иммунитета. Вырабатываемые ими цитокины направляют дифференциров-ку Т-хелперов в сторону Т2-субпопуляции, а также усиливают эозинофилогенез.

Дендритные клетки — отростчатые клетки костномозгового происхождения, локализуют­ся в лимфоидньгх органах и барьерных тканях. Экспрессируют на своей поверхности МНС II класса и ко-стимулирующие факторы (CD40, 80, 86). Способны поглощать путем эндоцитоза, перерабатывать (процессировать) и представ­лять (презентировать) антиген Т-хелперам в комплексе с МНС II класса. Является наиболее активной АПК. Из числа дендритных клеток хорошо известны клетки Лангерганса (в эпи­дермисе), интердигитальные клетки (в лимфа­тических узлах), дендритные клетки тимуса.

10.2.2. Организация функционирования иммунной ситемы

Как следует из представленного выше мате­риала, иммунная система имеет сложную орга­низацию. Для осуществления специфической функции, направленной на распознавание и уничтожение генетически чужеродных веществ, регуляцию функционирования компонентов им­мунной системы и поддержания генетического постоянства внутренней среды организма задейс­твовано множество различных клеточных популя­ций и растворимых факторов. Клетки постоянно циркулируют в организме, погибают в процессе жизнедеятельности и заново нарождаются.

В зависимости от конкретной потребности специфическая функция иммунной системы может быть активирована либо подавлена (супрессирована). Независимо от направленности любое реагирование иммунной системы осуществляется при постоянном взаимодействии практически всех типов ее клеток, т. е. в условиях межклеточной кооперации. Раздражителями (активирующим сигналом) являются антиген, непосредственный межклеточный контакт и растворимые факторы (цитокины, продукты деградации клеток макроорганизма или микроба). В развитии любого иммунного реагирования прослеживается каскад его последовательно сменяющихся этапов.

 

10.2.2.1. Взаимодействие клеток иммунной системы

Как было указано ранее, необходимым ус­ловием функционирования иммунной систе­мы является тесная межклеточная кооперация. Для связи между собой клетки используют раз­личные растворимые факторы, действующие дистантно, а также прямой контакт. Основу механизма межклеточной кооперации состав­ляет рецептор-лигандное взаимодействие.

Синтез растворимых факторов является одним из универсальных способов коммутации клеток иммунной системы между собой и с другими клетками всего организма. К таковым относятся цитокины, коих в настоящее время известно более 50. Цитокины представляют собой гетеро­генное семейство разнообразных по структуре и функции биологически активных молекул. Для них характерен ряд общих свойств:

  • Как правило, цитокины не депонируются в клетке, а синтезируются после соответству­ющего стимула;
  • Для восприятия цитокинового сигнала клетка экспрессирует соответствующий ре­цептор, который может взаимодействовать с несколькими различными цитокинами;
  • Цитокины синтезируются клетками разных рос­тков, уровней и направлений дифференцировки;
  • Субпопуляции клеток иммунной систе­мы различаются по спектру синтезируемых цитокинов и их рецепторов;
  • Цитокины обладают универсальностью, множественностью эффектов и синергизмом;
  • Цитокины могут воздействовать как на рядом расположенную клетку (паракринная регуляция), так и на сам продуцент (ауток-ринная регуляция);
  • Цитокиновая регуляция носит каскадный характер: активация клетки одним цитокином вызывает синтез другого;
  • В отличие от гормонов внутренней секре­ции, в подавляющем большинстве это коротко-дистантные медиаторы — их эффекты проявля­ются на месте выработки. Вместе с тем ряд про-воспалительных цитокинов (ИЛ-1, -6, а-ФНО и др.) может оказывать системное действие.

Цитокины можно классифицировать в за­висимости от их ведущей функциональной направленности:

 

  • Медиаторы доиммунного воспаления (ИЛ-1,-6, -12, а-ФНО и др);
  • Медиаторы иммунного воспаления (ИЛ-5, -9, -10,у-ИФНидр.);
  • Регуляторы пролиферации и дифферен­цировки лимфоцитов (ИЛ-2, -4, -13, (3-транс-формирующий фактор роста (р-ТФР) и др.);
  • Факторы роста клеток, или колониестиму-лирующие факторы (ИЛ-3, -7, ГМ-КСФ и др.);
  • Хемокины, или клеточные хемоаттрак-танты (ИЛ-8 и др.).

Краткая характеристика основных цитоки­нов приведена в табл. 10.2 (на с. 233).

Прямое межклеточное взаимодействие ос­новано на рецепции структур, экспрессиро-ванных на мембране клетки-оппонента. Это достижимо при достаточной пространственно-временной стабильности адгезирования клеток. Такой способ коммутации используют АПК в общении с Т-хелперами при презентации антигена и Т-киллеры при анализе комплекса МНС 1 класса на клетке-мишени. Механизм действия ко-стимулирующих факторов (пары СВ40-СО40-лиганд, CD28-CD80, 86) также требует непосредственного контакта.

Другим примером является взаимодействие естественных киллеров или высокодиффе-ренцированных Т-лимфоцитов (Т1-хелперов и Т-киллеров), экспрессирующих Fas-лиганд, с активированными лимфоцитами, образую- j щими много Fas-рецептора (CD95). Контакт j Fas-рецептора с соответствующим лигандом I оказывается губительным для активирован­ного лимфоцита — в последнем включается механизм апоптотического уничтожения.

10.2.2.2. Активация иммунной системы

Активация иммунной системы подразумевает! развитие продуктивной иммунной реакции в ответ на появление алпогенных факторов (антигенов) и продуктов деструкции тканей макроорганизма.

Это сложный многоступенчатый процесс, требующий продолжительного периода времени для своей индукции — около 4 суток. Критическим событием является невозможность элиминации антигена факторами неспецифической резистентности в течение указанного срока.

Пусковым механизмом адаптивного имму­нитета является распознавание «свой-чужой», которое осуществляют Т-лимфоциты при по­мощи своих прямых иммунорецепторов — TCR. В случае установления чужеродности биоорганической молекулы включается вто­рой этап реагирования — запускается интен­сивное тиражирование клона высокоспеци­фичных к антигену лимфоцитов-эффекторов, способных прервать аллогенную интервен­цию, а также накопление Т- и В-клеток им­мунологической памяти — гарантии будущего выживания. Это явление получило название экспансия клона. Параллельно, но несколько позже пролиферации стимулируется диффе-ренцировка иммунных лимфоцитов. Таким образом, продуктивная активация иммунной системы связана с размножением и дифференцировкой антигенореактивных кло­нов иммунокомпетентных клеток. Антигену в этом процессе отведена роль индуктора и фактора клональной селекции. Механизмы основных этапов активации иммунной систе­мы рассмотрены ниже. Активация Т-хелпера. В этом процессе (рис. 10.9) в обязательном порядке принимают учас­тие АПК, в роли которых в подавляющем боль­шинстве случаев выступают дендритные клетки, В-лимфоциты и макрофаги. АПК эндоцитирует молекулярный антиген (пептид), процессирует (ограниченный протеолиз) его во внутрикле­точных везикулах, встраивает образовавшийся олигопептид в молекулу МНС II класса и вы­ставляет полученный комплекс на наружной мембране. На поверхности АПК также экспрес-сируются ко-стимулирующие факторы — мо­лекулы CD40, 80, 86. Их мощным индуктором являются соединения, образующиеся на ранних этапах неспецифической антимикробной за­щиты (доиммунное воспаление), — продукты альтерации покровных тканей. Т-хелпер при помощи молекул адгезии прочно соединяется с поверхностью АПК.

Иммунорецептор Т-хелпера совместно с мо­лекулой CD3 при поддержке ко-рецепторной молекулы CD4 взаимодействует с комплек­сом антиген—МНС II класса и анализирует аутогенность его структуры. Продуктивность рецепции зависит от ко-стимулирующих воз­действий. Поэтому молекула CD28 Т-хелпера связывается с CD80/86 АПК (афферентный сигнал), а СО40-лиганд — со своей парой CD40 (эфферентный сигнал).

 

В случае признания чужеродности комп­лекса антиген—МНС II класса (а точнее «не своего») Т-хелпер активируется. Он экспрес-сирует рецептор к ИЛ-2 и начинает синте­зировать ИЛ-2 и другие цитокины. Итогом активации Т-хелпера является его размноже­ние и дифференцировка в одного из своих по­томков — Т1- или Т2-хелпера (см. рис. 10.7). Параллельно стимулируются клетки-эффек­торы. Любое изменение условий рецепции абортирует активацию Т-хелпера и может ин­дуцировать в нем апоптоз.

Активация В-лимфоцита. Для активации В-лимфоцита (см. рис. 10.8) необходима суммация трех последовательных сигналов. Первый поступает от молекулы антигена че­рез BCR. Оказавшись рядом с чужеродной молекулой, специфичный к ней В-лимфоцит связывается с эпитопом антигена при помо­щи своего иммунорецептора.

Второй и третий сигналы формируются при контакте с активированным Т2-хелпером: интерлейкиновый стимул (ИЛ-4, -5, -6) и ко-стимулирующий — взаимодействие CD40 с СО40-лигандом передает В-лимфоциту аф­ферентный сигнал. Стабильность контакта двух клеток обеспечивают множественные связи молекул адгезии.

Активация инициирует размножение и диф-ференцировку специфичного к конкретному антигену В-лимфоцита (см. рис. 10.5). В ито­ге в пределах зародышевых (герминативных) центров лимфоидных фолликулов появляется клон специфических антителопродуцентов. Дифференцировка позволяет переключить биосинтез иммуноглобулинов с классов М и D на более экономные: G, А или Е (редко) — повысить аффинность синтезируемых анти­тел и образовать В-клетки иммунологической памяти. В случае терминальной дифференци-ровки появляется плазматическая клетка.

Активация В-лимфоцита — весьма тонкий процесс. Отсутствие хотя бы одного из стиму­лов (нарушение межклеточной кооперации, неспецифичность рецептора В-лимфоцита или элиминация антигена) блокирует разви­тие антительного иммунного ответа.

Активация Т-киллера. Т-киллер (клетки ар-типа) постоянно мигрирует во внутренних средах организма в поисках клеток с призна­ками аллогенности — чужеродных, генети­чески трансформированных или зараженных. Критерием оценки является структура «био­логического паспорта» клетки, т. е. комплекса МНС I класса.

Исполнение надзорной функции требует скрупулезной точности, поэтому Т-киллер вступает в тесный и прочный контакт с по­тенциальной клеткой-мишенью, используя молекулы адгезии (рис. 10.11). Затем иммуно-рецептор Т-киллера (ct(3TCR) совместно с мо­лекулой CD3 при поддержке ко-рецепторной молекулы CD8 взаимодействует с антиген­ным комплексом МНС I класса и анализирует его структуру. Обнаружение отклонений в пользу аллогенности активирует Т-киллер к экспрессии рецептора к ИЛ-2 и синтезу ИЛ-2 и специальных токсических субстанций (пер-форин, гранзимы, гранулизин). Последние вызывают гибель клетки-мишени (см. разд. 10.2.1.3.1.2.2). Аутогенный ИЛ-2 стимулирует пролиферацию Т-киллера и формирование Т-клеток иммунологической памяти.

Т-киллер может функционировать автоном­но — самостоятельно инициируя и поддержи­вая клонообразование. Однако это свойство реализуется редко. В подавляющем большинстве случаев для адекватного развития клеточ­ной формы иммунного ответа требуются более мощные стимулы со стороны Т1-хелпера.

10.2.2.3. Супрессия иммунного ответа

Супрессия, или подавление иммунного от­вета, является физиологической реакцией организма, которая в норме завершает иммунный ответ. Иммуносупрессия развивается при устранении из организма антигенного раздражителя и направлена на торможение экспансии антигенспецифичных клонов лимфоцитов. В отличие от иммунологической толерантности, супрессии подвергается уже инициированное иммунное реагирование. Различают три механизма иммуносуп рессии:

  • уничтожение клонов иммунокомпетентных клеток путем апоптоза,
  • торможение активности иммунокомпетентных клеток цитокинами,
  • элиминация антигенного стимула.

Апоптотической элиминации подвергаются следующие группы клеток:

  • терминально дифференцированные лимфоциты, завершившие свою биологическую программу;
  • активированные лимфоциты, не получившие антигенного стимула;
  • «изношенные» лимфоциты;
  • аутореактивные клетки.

Факторами, инициирующими апоптоз, являют-1 ся глюкокортикоидные гормоны, Fas-лиганд, а-1 ФНО и другие иммуноцитокины, а также гранзимыЯ Апоптотическое уничтожение клеток-мишеней могуи активировать Т-киллеры, естественные киллеры с фенотипом CD16CD56″Hor° и Т1-хелперы.

Функциональная активность иммунокомпетент-ных клеток может быть ингибирована растворимыми факторами их конкурентов или потомков. ВедущаЯ роль в этом явлении принадлежит иммуноцитошщЯ с множественными эффектами. Известно, напримерД что Т2-хелперы, убТ-лимфоциты и тучные клетки при помощи ИЛ-4, -13 препятствуют дифферент» ровке ТО-хелпера в Т1 -клетку. Последний, в своею очередь, может блокировать образование Т2-хелперЯ синтезируя у-ИФН. Пролиферацию Т- и В-лим-Щ фоцитов ограничивает р-ТФР, который продуциру-И ют терминально дифференцированные Т-хелпеиН Уже упомянутые продукты Т2-хелпера (ИЛ-4, -1}J р-ТФР) подавляют биологическую активность мак­рофагов.

Помимо цитокинов, супрессия гуморального звена иммунитета может быть вызвана иммуноглобулина­ми. Избыточные концентрации иммуноглобулина класса G, связываясь со специальными рецепторами на мембране В-лимфоцита, тормозит биосинтетичес­кую активность клетки и ее способность дифферен­цироваться в плазмоцит.

На мембране клеток были также обнаружены осо­бые «негативные» ко-рецепторы. Их раздражение также вызывает супрессорный эффект.

Развитие иммунного ответа можно приостановить, устранив из организма антиген. В природе это со­бытие наблюдается при полном освобождении ор­ганизма от патогена (стерильный иммунитет). На практике эффект достигается очищением организма плазмо- или лимфосорбцией, а также нейтрализаци­ей антигена антителами, специфичными к высоко-иммуногенным эпитопам.

10.2.2.4. Онтогенез клональной структуры иммунной системы

В развитии иммунной системы четко прослежива­ются два этапа. Первый — антигеннезависимый. Он охватывает эмбриональный и ранний постнаталь-ный периоды развития и частично продолжается всю жизнь. В течение этого периода образуются стволовые клетки ветвей поэза и широкое разнообразие антиген-специфичных клонов лимфоцитов. Предшественники убТ- и В1-лимфоцитов мигрируют в покровные ткани и формируют автономные лимфоидные ростки.

Второй этап, антигензависимый, начинается сра­зу же после рождения особи и продолжается до ее гибели. В течение всей жизни идет «ознакомление» клеточных элементов иммунной системы с много­образием состава окружающего нас мира антигенов. По мере накопления биологического опыта, т. е. количества и качества продуктивных контактов с антигенами, происходит селекция и тиражирование отдельных клонов иммунокомпетентных клеток.

Особенно интенсивная экспансия клонов характерна для детского возраста. В течение первых 5 лет жизни иммунной системе ребен­ка приходится усваивать примерно 90 % био­логической информации. Еще 9 % восприни­мается до наступления пубертата, на взрослое состояние остается лишь около 1 %.

Совершенно очевидно, что иммунной системе ребенка приходится справляться с чудовищныминагрузками, которые, в основном, падают на гумо­ральное звено иммунитета. В местах с повышенной плотностью населения и частыми межиндивидуаль­ными контактами (крупные города), где создают­ся условия для длительной персистенции высокой концентрации патогенов, дети часто болеют. Это закономерное явление, однако создается впечатле­ние о тотальном иммунодефиците, порожденном крайним экологическим неблагополучием. Между тем эволюционно заложенные механизмы иммун­ной защиты позволяют организму ребенка успешно справиться с трудным естественным испытанием на жизнеспособность и адекватно отреагировать на вакцинопрофилактику.

С возрастом возникают структурно-функциональ­ные изменения в иммунной системе. В отличие от де­тского организма, у взрослого до 50 % всего лимфоид-ного пула представлено клонами клеток, прошедших антигенную стимуляцию. Накопление иммунной сис­темой биологического опыта реализуется в образова­нии узкой «библиотеки» жизненно важных («актуаль­ных») клонов лимфоцитов, специфичных к основным патогенам. Однако при этом в организме сохраняется широкий набор невостребованных «наивных» клеток. Благодаря долгоживучести клеток иммунологической памяти «актуальные» клоны со временем становятся самодостаточными. Они приобретают способность к самоподдержанию и независимость от центральных органов иммунной системы. Функциональная нагруз­ка на тимус снижается, что проявляется его возрастной инволюцией.

Структура популяции Т-лимфоцитов также пре­терпевает возрастные изменения. Установлено, что в организме новорожденных преобладают Т2-хелпе-ры, необходимые для развития антительной защиты. Однако со временем перед организмом все острее встает проблема внутриклеточного паразитизма и различных инвазий. Кроме того, самостоятельная жизнедеятельность в условиях воздействия разнооб­разных факторов среды обитания требует надежного и хорошо организованного иммунологического над­зора за морфогенетическим постоянством клеточ­ных элементов организма. Поэтому после рождения начинает усиленно развиваться система адаптивного клеточного иммунитета, а вместе с ним — образова­ние клонов Т1-хелперов и Т-киллеров. Нарушение постнатальной колонизации желудочно-кишечного тракта тормозит процесс адекватного активность пос­ледних оборачивается аллергизацией детских орга­низмов.

Продуктивный иммунный ответ после своего за­вершения (нейтрализации и элиминации антигена из организма) также сопровождается изменениями клональной структуры антигенореактивных лимфо­цитов. В отсутствие активирующих стимулов клон инволюционирует. Невостребованные клетки со вре­менем погибают от старости, причем этот процесс начинается с наиболее дифференцированных лимфо­цитов-эффекторов. Продолжительность инволюции лимитирована численностью клона и проявляется постепенным угасанием иммунного ответа. Однако в организме длительно персистируют клетки иммуно­логической памяти.

Старческий период жизни имеет свои отличитель­ные черты. Доминирование в иммунной системе «ак­туальных» клонов антигенспецифичных лимфоцитов сочетается с нарастающей иммунодепрессией на фоне снижения общей реактивности. Несмотря на всю мощь иммунологической памяти, инфекции, вызванные да­же условно-патогенными микробами, зачастую прини­мают затяжной или угрожающий характер. Надзорная функция, как и иммунитет против внутриклеточных паразитов, также теряет эффективность. Клеточное зве­но иммунитета не справляется с нарастающим объемом злокачественно трансформированных клеток. Поэтому у пожилых людей часто встречаются новообразования.

Гяfinпня 1П 11 all лица in, j O^I-MAilHKIf1 {“^П-.Йи’

CD-маркерТип клеткиФункция
CD1Т-лимфоцитМолекула МНС I класса, связанная с {5-микроглобулином, участвует в пред­ставлении антигена
CD2Т-лимфоцитОсуществляет адгезию цитотоксических Т-лимфоцитов к клеткам-мишеням, Т-лимфоцитов к эндотелию, тимоцитов к тимическим эпителиальным клет­кам
CD3Т-лимфоцитМолекулы, ассоциированные с рецептором Т-лимфоцитов. Участвуют в про­ведении сигнала от рецептора путем активации цитоплазматической тирозин-киназы. Маркер абсолютного большинства всех зрелых Т-лимфоцитов
CD4Т-лимфоцитМаркер Т-хелперов

Ко-рецептор для Т-клеточного рецептора

CD5Т- и В-лимфоцитМаркер В1-лимфоцитов
CDSТ-лимфоцитМаркер цитотоксических Т-лимфоцитов Ко-рецептор для Т-клеточного рецептора
CDlldЛейкоцитыaD субъединица интегрина а, связанная с CD 18
CDHМоноцитыРецептор для Л ПС
CD16Естествен­ный киллерУчаствуют в антителозависимой клеточно-опосредованной цитотоксичности Является Fc-рецегггором
CD18ЛейкоцитыИнтегрин (3, вовлекаемый в процесс взаимодействия между клетками и клеток с матриксом
CDI9В-лимфоцитКо-рецептор для В-клеточного иммунорецептора
CD20В-лимфоцитРегулирует активацию В-клеток, формируя кальциевые каналы
CD21Зрелые В-лимфоцитыКо-рецептор для В-клеточного иммунорецептора

Рецептор для C3d компонента комплемента и вируса Эпштейна-Барр

CD22В-лимфоцитМаркер зрелых В-лимфоцитов

Осуществляет адгезию В-клеток к эритроцитам, Т-клеткам, моноцитам и нейтрофилам

CD25Т-лимфоцитМаркер активированного лимфоцита Рецептор для ИЛ-2
CD28Т-лимфоцитРецептор Т-хелпера для взаимодействия с костимулирующим фактором (СО80/86)АПК
CD30Активированные Т- и В-лимфоци-ты, естественный киллер и моно­цитыУсиливает пролиферацию Т- и В-клеток после связывания с лигандом
CD40В-лимфоцитУчаствует в В-клеточной активации, пролиферации и дифференцировке после связывания СО40-лиганда
CD56Естественный киллерАктивация цитотоксичности и цитокиновой продукции
CD64Моноциты, макрофагиВысокоаффинный рецептор для IgG (IgG3>IgGl>IgG4>»IgG2)
CD94Естественный киллерИнгибиция/активашя цитотоксичности естественных киллеров
CD95Разные клеткиМаркер апоптоза клетки

 

Таблица 10.2. Характеристика основных цитокинов

ЦитокинРазмер моле­кулы (ами­нокислотных остатков)Клетка-продуцентРецепторБиологический эффект
ИЛ-1 (р)153МакрофагCD121Локальный эффект:

Активация Т-лимфоцитов и макрофагов Системный эффект:

Развитие симптомов септического шока (лихорад­ка и пр.)

ИЛ-2133Активированный Tl-хелперCD25, 122, 132Потенцирует выживание клеток

Стимулирует пролиферацию Т-, В-лимфоцитов и

естественных киллеров

ИЛ-3133Т-лимфоцитCD123Мультиколониестимулирующий фактор
ИЛ-4129Т-лимфоцит, ес­тественный кил­лер, тучная клеткаCD124,

132

Направляет дифференцировку ТО-хелпера в сто­рону Т2-клетки Активация В-лимфоцитов Переключение синтеза иммуноглобулинов на класс Е Противовоспалительное действие
ИЛ-5115Т2-хелпер, тучная клеткаCD125Активирует эозинофилы

Стимулирует синтез иммуноглобулина класса Е

ИЛ-6184Т-лимфоцит, мак­рофагCD126,

130

Локальный эффект:

Стимуляция пролиферации и дифференцировки

Т- и В-лимфоцитов

Усиление биосинтеза иммуноглобулина класса А

Системный эффект:

Индукция лихорадки

Стимуляция биосинтеза в печени белков острой фазы

ИЛ-7152Клетки костного моз­га, ■убТ-лимфоиитCD127,

132

Поддерживает размножение преТ-, преВ- и убТ-лимфоцитов
ИЛ-9125Т2-хелперCD132Активация тучных клеток
ИЛ-10160Т2-хелпер, маро-фаг, В-лимфоцитIL-10RСтимулирует переключение синтеза иммуногло­булинов на класс G4 Мощный ингибитор активности макрофага и Т-киллера
ИЛ-11178 :ФибробластCD 130Синергист ИЛ-3

Направляет дифференцировку ТО-хелпера в сторону Т1-клетки

ИЛ-12503Макрофаг, В-лимфоцитCD132Стимулирует созревание Т-киллеров

Активирует естественные киллеры

    Направляет дифференцировку ТО-хелпера в сто­рону Т2-клетки
ИЛ-13132Т2-хелперCD132Активация В-лимфоцитов

Стимулирует переключение синтеза иммуногло­булинов на класс Е

Противовоспалительное действие

ИЛ-15114Т-лимфоцитCD122,

132

Стимулирует пролиферацию Т-лимфоцитов и естественных киллеров
  Т-лимфоцит, Хемоаттрактант для Т-хелперов, моноцитов,
ИЛ-16130тучная клетка, эозинофилCD4эозинофилов

Блокирует апоптоз в Т-лимфоцитах

ИЛ-17150CD4+ Т-лимфо-циты иммуноло­гической памятиIL-17RСтимулирует эпителиальные», эндотелиальные клетки и фибробласты к продукции цитокинов
   IL-lRrp 
ИЛ-18157Активированный маркофаг(го-

молог

CD121)

Индукция синтеза у-ИФН Т-лимфоцитами и естественными киллерами
    Активирует макрофаг и естественный киллер
  Т1-хелпер,

Т-киллер,

естественный

 Индуцирует экспрессию на клетках МНС 1 и II классов
Y-ИФН143 

 

CD119Потенцирует образование Т1-хелпера Стимулирует в В-лимфоцитах переключение
  киллер биосинтеза изотипов иммуноглобулинов Обладает противовирусным действием
ГМ-КСФ127Т-лимфоцит, макрофагCD116Поддержка ростка миелопоэза в костном мозге
Р-ТФР112Активированные Т-лимфоциты и моноциты(5-TGF-RМощный иммуносупрессор: ингибирует актива­цию Т-киллеров, макрофагов и гранулоцитов и пролиферацию лимфоцитов Стимулирует ангиогенез
  Активированные макрофаг, ней- Локальный эффект:

Создает очаг местного воспаления в покровных

тканях при инфицировании

Активирует биосинтез ИЛ-1, -6

ФНО-а157трофил, естест­венный киллер и тучная клеткаCD120Стимулирует синтез белков острой фазы Системный эффект:

Индуцирует симптомы септического шока (ли­хорадка, коллапс, синдром диссеминированно-го внутрисосудистого свертывания и др.)

    Тормозит миграцию моноцитов из очага воспаления
МИФ115Т-лимфоцитMIF-RСтимулирует дифференцировку моноцита в

макрофаг

Активирует макрофаг

ГЛАВА 11. ОСНОВНЫЕ ФОРМЫ ИММУННОГО РЕАГИРОВАНИЯ

Свою биологическую функцию иммунная система осуществляет с помощью сложного комплекса взаимосвязанных реакций, в ко­торых задействованы все ее структурные и функциональные элементы. В зависимости от конкретного проявления этот комплекс можно подразделить на отдельные формы. Основными из них являются: антител ообразо-вание, иммунный фагоцитоз, опосредованный клетками киллинг, реакции гиперчувстви­тельности, формирование иммунологической памяти, формирование иммунологической толерантности.

Все элементы иммунной системы имеют единый принцип активации и практически одновременно реагируют на изменение го-меостаза. Однако в зависимости от харак­тера антигенного воздействия наблюдается неравномерное стимулирование — одна или несколько форм становятся ведущими, в то время как другие могут практически не про­являться. Например, при токсинемической инфекции преимущественно активируется продукция антител, так как организму не­обходимы иммуноглобулины-антитоксины, которые способны нейтрализовать активный центр молекулы токсина. При туберкулезной инфекции, наоборот, антитела практически не имеют значения. В этом случае основную функциональную нагрузку выполняют фак­торы клеточного иммунитета (Т-киллеры, ес­тественные киллеры, фагоциты) и т. д.

11.1. Антитела и антителообразование

11.1.1. Природа антител

Одной из форм реагирования иммунной системы в ответ на внедрение в организм ан­тигена является биосинтез антител — белков, специфически реагирующих с антигенами. Антитела, также как и фагоцитоз, — это одна из наиболее филогенетически древних форм

иммунной защиты. Антительный ответ обнаруживается уже у некоторых видов рыб.

Антитела относятся к γ-глобулиновой фракции белков сыворотки крови. На долю γ-глобулинов приходится 15—25 % белкового содержания сыворотки крови, что составляет примерно 10—20 г/л. Поэтому антитела получили название иммуноглобулинов, и их обозначают символом Ig. Следовательно, антитела — это γ-глобулины, способные специфически связываться с антигеном и участвовать во многих иммунологических реакциях. Антитела синтезируются В-лимфоцитами и их потомками — плазматическими клетками.

Иммуноглобулины существуют в циркули­рующей форме, в виде рецепторных молекул на иммунокомпетентных клетках и миеломных белков. Циркулирующие антитела под­разделяются на сывороточные и секреторные. К антителам могут быть также отнесены белки Бенс-Джонса, которые являются фрагмента­ми молекулы Ig (его легкая цепь) и синтезиру­ются в избытке при миеломной болезни.

Строение и функцию антител изучали мно­гие видные ученые. П. Эрлих (1885) предло­жил первую теорию гуморального иммунитета. Э. Беринг и С. Китазато (1887) получили пер­вые антитоксические сыворотки к дифтерий­ному и столбнячному токсинам. А. Безредка (1923) разработал метод безопасного введения пациентам лечебных иммунных сывороток. Уже в наши дни большая заслуга в расшиф­ровке строения молекулы Ig принадлежит Д. Эдельману и Р. Портеру (1959), а разгадка многообразия антител — трудам Ф. Бернета (1953) и С. Тонегавы (1983).

Вследствие высокой специфичности и зна­чимости в формировании гуморального имму­нитета, антитела используют для диагностики, профилактики и лечения соматических и инфекционных заболеваний, выделения и очист­ки биологически активных веществ. Для этого на основе специфических иммуноглобулинов созданы соответствующие иммунобиологичес­кие препараты (лечебные и диагностические сыворотки, диагностикумы и пр.).

11.1.2. Молекулярное строение антител

Иммуноглобулины являются гликопроте-идами. Их молекула состоит из нескольких соединенных вместе полипептидных цепей, стабилизированных сахаридными остатками. При нагревании выше 60 °С молекула Ig дена­турируется. Иммуноглобулины различаются по структуре, атигенному составу, а также по выполняемым функциям.

Молекулы Ig, несмотря на их видимое раз­нообразие, имеют универсальное строение (рис. 11.1). Если молекулу Ig обработать 2-мер-каптоэтанолом, то она распадется на 2 пары полипептидных цепей: две тяжелых (550-660 аминокислотных остатков, молекулярный вес 50 кДа) и две легких (220 аминокислотных остатков, молекулярный вес — 20—25 кДа). Обозначают их как Н- (от англ. heavy — тяжелый) и L- (от англ. lightлегкий) цепи. Тяжелые и легкие цепи связаны между собой попарно дисульфидными связями (-S-S-).

Между тяжелыми цепями также есть дисульфидная связь. Это так называемый «шарнирный» участок. Такой тип межпептидного соединения придает структуре молекулы динамичность — он позволяет легко менять конформацию в зависимости от окружающих условий и состояния. Шарнирный участок ответствен за взаимодействие с первым компонентом комплемента (С1) и активацию его по классическому пути.

Легкие и тяжелые полипептидные цепи молекулы Ig имеют определенные варианты структуры или типы. Они определяются первичной аминокислотной последовательностью цепей и степенью их гликозилирования. Легкие цепи бывают 2 типов: к и X (каппа и лямбда). Тяжелых цепей известно 5 типов: а, у, ц, е и 8 (альфа, гамма, мю, эпсилон и дельта), — которые имеют также и внутреннее подразделение. Среди многообразия цепей а-типа выделяют al- и а2- подтипы, ац-цепей— ц1- и ц2-. Дляу-цепи известны 4 подтипа: у1-, у2-, уЗ- и у4-.

 

Вторичная структура полипептидных цепей молекулы Ig обладает доменным строением. Это означает, что отдельные участки цепи свернуты в глобулы (домены), которые со­единены линейными фрагментами. Домены стабилизированы внутренней дисульфидной связью. Таких доменов в составе тяжелой цепи Ig бывает 4—5, а в легкой — 2. Каждый домен состоит примерно из 110 аминокислот­ных остатков.

Домены различаются по постоянству ами­нокислотного состава. Выделяют С-домены (от англ. constant — постоянный), с неизменной, или постоянной, структурой полипептидной цепи, и V-домены (от англ. variable — измен­чивый), с переменной структурой. В составе легкой цепи есть по одному V- и С-доме-ну, а в тяжелой — один V- и 3—4 С-домена. Примечательно, что не весь вариабельный домен изменчив по своему аминокислотному составу, а лишь его незначительная часть — гипервариабельная область, на долю которой приходится около 25 %.

Вариабельные домены легкой и тяжелой цепи совместно образуют участок, который специфически связывается с антигеном. Это антигенсвязывающий центр молекулы Ig, или паратоп.

Гипервариабельные области тяжелой и лег­кой цепи определяют индивидуальные осо­бенности строения антигенсвязывающего центра для каждого клона Ig и многообразие их специфичностей.

Обработка ферментами молекулы Ig при­водит к ее гидролизу на определенные фраг­менты. Так, папаин разрывает молекулу выше шарнирного участка и ведет к образованию трех фрагментов (см. рис. 11.1). Два из них способны специфически связываться с анти­геном. Они состоят из цельной легкой цепи и участка тяжелой (V- и С-домен), и в их структуру входят антигенсвязывающие учас­тки. Эти фрагменты получили название Fab |(от англ. «фрагмент, связывающийся с анти­геном»). Третий фрагмент, способный обра­зовывать кристаллы, получил название Fc (от англ. «фрагмент кристаллизующийся»). Он от­ветствен за связывание с рецепторами на мембране клеток макроорганизма (Fc-рецепторы) и некоторыми микробными суперантигенами (например, белком А стафилококка). Пепсин расщепляет молекулу Ig ниже шарнирного участка и ведет к образованию 2 фрагментов: Fc и двух сочлененных Fab, или F(ab)2.

Помимо вышеописанных, в структуре моле­кул Ig обнаруживают дополнительные поли­пептидные цепи. Так, полимерные молекулы IgM и IgA содержат Jnenmud (от англ. join — соединяю). Он объединяет отдельные мономе­ры в единое макромолекулярное образование (см. разд. 11.1.3) и обеспечивает превращение полимерного Ig в секреторную форму.

Молекулы секреторных Ig в отличие от сы­вороточных обладают особым S-пептидом (от англ. secretсекрет). Это так называемый секреторный компонент. Его молекулярная масса составляет 71 кДа, и он является (3-гло-булином. Секреторный компонент — продукт деградации рецептора эпителиальной клетки к J-пептиду. Он обеспечивает перенос молекулы Ig через эпителиальную клетку в просвет ор­гана (трансцитоз) и предохраняет ее в секрете слизистых от ферментативного расщепления.

Рецепторный Ig, который локализуется на цитоплазматической мембране В-лимфоци-тов и плазматических клеток, имеет допол­нительный гидрофобный трансмембранный М-пептид (от англ. membrane — мембрана). Благодаря гидрофобным свойствам он удер­живается в липидном бислое цитоплазмати­ческой мембраны, прочно, как якорь, фикси­рует рецепторный Ig на мембране иммуноком-петентной клетки и проводит рецепторный сигнал через цитоплазматическую мембрану внутрь клетки.

J- и М-пептиды присоединяются к молеку­ле Ig в процессе ее биосинтеза. S-пептид яв­ляется продуктом эпителиальной клетки— он присоединяется к полимерной молекуле Ig при ее транслокации через эпителиальную клетку.

 

11.1.3. Структурно-функциональные особенности иммуноглобулинов различных классов

В зависимости от особенностей молекулярно­го строения тяжелой цепи (т. е. наличия изото­пических, или групповых антигенных детермнант) различают 5 классов, или изотипов Ig (рис. 11.2). Молекулы, содержащие тяжелую цепь а-типа, относят к изотипу А (сокращенно IgA); IgD обладает б-цепью, IgE— е-цепью, IgG— -у-цепью и IgM — ц-цепью. Соответственно осо­бенностям строения подтипов тяжелых цепей различают и подклассы Ig.

В структуре молекул Ig разных классов про­слеживается общая закономерность — все они построены из одних и тех же элементов, которые были описаны в разд. 9.5.1.2. Однако для каждого изотипа характерны свои осо­бенности. В частности, IgD, IgE и IgG имеют мономерное строение, IgM — практически всегда является пентамером, а молекула IgA может быть моно-, ди- и тримером. Наиболее характерные черты, присущие различным изотипам Ig, приведены в табл. 11.1 нас. 256.

Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70-80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Этот уровень достигается к 7—10-летнему воз­расту. Период полураспада IgG — 21 день.

IgG — мономер, имеет 2 антигенсвязы-вающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами (В ) и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа (см. разд. 11.4). В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело (см. далее).

Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3—4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосре-дованной цитотоксичности.

Иммуноглобулин класса М. Наиболее круп-ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM — 5 дней.

На его долю приходится около 5-10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2—4-летнему возрасту.

IgM филогенетически — наиболее древний иммуноглобулин. Синтезируется предшественниками и зрелыми В-лимфоцитами (В). Образуется в начале первичного иммунного ответа, также первым начинает синтезиро ваться в организме новорожденного — определяется уже на 20-й неделе внутриутробного развития.

Обладает высокой авидностью, наиболее эффективный активатор комплемента по классическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать секреторную форму и выделяться в секрет слизистых, в том числе в молоко (механизм — см. IgA). Большая часть нормальных антител и изоагглютининов относится к IgM.

Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

IgM обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосре-дованной цитотоксичности.

Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

Сывороточный IgA: На его долю прихо­дится около 10-15 % всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA — 6 дней. IgA — мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами (Ва) и плазматическими клетками. Хорошо определяется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе. Обладает высокой аффинностью. Может I быть неполным антителом. Не связывает комплемент. Не проходит через плацентарный барьер.

IgA обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществляя и запуск антителозависимой клеточно-опосредованной цитотоксичности.

Секреторный IgA: В отличие от сывороточного, секреторный IgA (slgA) существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-nenгады. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

Синтезируется Ва-лимфоцитами и их потомками — плазматическими клетками соответствующей специализации только в пределах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Hv.isIgAсчитается самым многочисленным в организме — его количество превышает суммарное содержание IgM и IgG. В сыворотке крови slgA не обнаруживается.

Формирование молекулы slgA происходит при прохождении через эпителиальную клетку, где он присоединяется к секреторному компо­ненту. На базальной и латеральной поверхности эпителиальная клетка несет рецептор к J-цепи полимерной молекулы Ig (JR). Образующийся после взаимодействия этого рецептора с поли­мерной молекулой IgA комплекс эндоцитиру-ется клеткой в виде везикулы. Затем везикула переносится к апикальной поверхности эпите-лиоцита, где JR подвергается ферментативному расщеплению. В итоге IgA высвобождается в слизистый секрет просвета органа уже в секре­торной форме — оставшийся прикрепленным к молекуле Ig фрагмент JR является S-цепью.

Секреторная форма IgA — основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко — примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса — около 190 кДа, константа седиментации — примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10—15 годам жизни.

Синтезируется зрелыми В-лимфоцитами (Ве) и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегоч-ного дерева и ЖКТ.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью — тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа — реакция I типа (см. разд. 11.4).

Иммуноглобулин класса D. Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.

Рецепторныеиммуноглобулины.Рецепторные, или мембраные Ig, локализуются на цитоп-лазматической мембране В-лимфоцитов. Выполняют функции антигенспецифических рецепторов. Рецепторные Ig имеют те же изо-тип и специфичность, что и синтезируемые в межклеточную среду антитела. Структурное отличие от секретируемых антител заключа­ется в особом, дополнительном М-пептиде, благодаря которому молекула рецепторного Ig фиксируется в цитоплазматической мембране иммунокомпетентной клетки.

Нормальные антитела. В сыворотке кро­ви человека всегда определяется базальный уровень иммуноглобулинов, которые получи­ли название нормальных, или естественных, антител. К нормальным антителам относят изотематтлютинины — антитела различной аффинности и специфичности направлен­ные против эритроцитарных антигенов групп крови (система АВО), а также против бактерий кишечной группы, кокков и некоторых ви­русов. Эти антитела постоянно образуются в организме без явной антигенной стимуляции. С одной стороны, они отражают готовность макроорганизма к иммунному реагированию, а с другой — могут свидетельствовать об отда­ленном контакте с антигеном.

Моноклональные антитела. Каждый В-лим-фоцит и его потомки, образовавшиеся в ре­зультате пролиферации (т. е. клон), способны синтезировать антитела с паратопом строго определенной специфичности. Такие антитела получили название моноклональных. В природ­ных условиях макроорганизма получить моно­клональные антитела практически невозмож­но. Дело в том, что на одну и ту же антигенную детерминанту одновременно реагируют до 100 различных клонов В-лимфоцитов, незначи­тельно различающихся антигенной специфич­ностью рецепторов и, естественно, аффиннос­тью. Поэтому в результате иммунизации даже монодетерминантным антигеном мы всегда получаем поликлоналъные антитела.

Принципиально получение моноклональ­ных антител выполнимо, если провести пред­варительную селекцию антителопродуцирую-щих клеток и их клонирование (т. е. выделение отдельных клонов в чистые культуры). Однако задача осложняется тем, что В-лимфоциты, как и другие эукариотические клетки, имеют ограниченную продолжительность жизни и число возможных митотических делений.

Проблема получения моноклональных ан­тител была успешно решена Д. Келлером и Ц. Милыптейном (1975). Авторы получили гибридные клетки путем слияния иммун­ных В-лимфоцитов с миеломной (опухоле­вой) клеткой. Полученные гибриды обладали специфическими свойствами антителопро-дуцента и «бессмертием» раковотрансфор-мированной клетки. Такой вид клеток полу­чил название гибридом. Гибридома хорошо размножается в искусственных питательных средах и в организме животных и в неогра­ниченном количестве вырабатывает антите­ла. В результате дальнейшей селекции были отобраны отдельные клоны гибридных кле­ток, обладавшие наивысшей продуктивнос­тью и наибольшей аффинностью специфи­ческих антител.

Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиоло­гических препаратов.

Полные и неполные антитела. Среди мно­гообразия Ig выделяют полные и неполные антитела. Деление основано на способности образовывать в реакции агглютинации или преципитации (in vitro) хорошо различимую глазом макромолекулярную структуру гига­нтского иммунного комплекса. Таким свойс­твом обладают полные антитела. К ним отно­сятся полимерные молекулы Ig (изотип М), а также некоторые IgA и IgG.

Неполные антитела лишены такой способ­ности, несмотря на то что они специфически связываются с антигеном. В связи с этим их еще называют непреципитирующими или блокирующими антителами. Причиной этого явления может быть экранирование одного из антигенсвязывающих центров мономерной молекулы Ig, а также недостаточное число или малая доступность антигенных детерми­нант на молекуле антигена. Выявить непол­ные антитела можно при помощи реакции Кумбса — путем использования «вторых», ан-тииммуноглобулиновых антител (см. гл. 13).

Другие виды антител. Помимо вышепри­веденных различают тепловые и холодовые антитела. Первые взаимодействуют с анти­геном при температуре +37 °С. Для вторых наибольшая эффективность связывания про­является в диапазоне +4… —10 °С. Понижение температуры реакционной смеси позволяет в ряде случаев (например, при отсутствии спе­цифического антигена) ограничить низкоаф­финные взаимодействия и повысить специ­фичность реакции.

По способности активировать комплемент (классический путь) антитела подразделяют­ся на комплементсвязывающие (IgM, IgGl и IgG3) и комплементнесвязывающие.

В последние годы открыт вид антител, ко­торые выполняют функции катализаторов биохимических процессов — обладают про-теазной или нуклеазной активностью. Это реликтовые свойства антител. Такие антитела получили название абзимы.

Большим достижением молекулярной био­логии в области иммунологии, помимо гибри­дом, явилось получение белков со свойствами антител — это одноцепочечные антитела, би­функциональные антитела и иммунотокси-ны. Они синтезируются живыми биологичес­кими системами. Одноцепочечные антитела представляют собой фрагмент вариабельного домена Ig, который обладает определенной специфичностью и аффинностью и спосо­бен к блокирующему действию. Размер такой молекулы очень мал и практически не об­ладает иммуногенностью. Бифункциональные антитела имеют антигенсвязывающие цен­тры разной специфичности, т. е. направле­ны к различным антигенным детерминантам. Иммунотоксины представляют собой гибрид молекулы иммуноглобулина и токсина. Они способны направленно доставить молекулу токсина к клетке-мишени, убить ее или нару­шить в ней метаболические процессы.

Иммунотоксины и бифункциональные ан­титела имеют большое будущее. В перспективе их будут использовать для иммунодиагнос­тики, а также профилактики и лечения ин­фекционных, онкологических,аллергических и других заболеваний.

 

11.1.4.      Антигенность антител Иммуноглобулин, как и всякий белок, обладает антигеностью и выраженной иммуногенностью. В молекуле Ig различают 4 типа атигенных детерминант: видовые, изотопические, аллотипические и идиотипические. Видовые антигенные детерминанты характерны для Ig всех особей данного вида (например, кролика, собаки, человека). Они определяются строением легкой и тяжелой цепи. По этим детерминантам можно идентифицировать видовую принадлежность антител.

Изотипические антигенные детерминанты являются групповыми. Они локализуются в тяжелой цепи и служат для дифференцировки семейства Ig на 5 изотипов (классов) и мно­жество подклассов (см. разд. 11.1.3).

Аллотипические антигенные детерминанты являются индивидуальными, т. е. присущими конкретному организму. Они располагаются в легкой и тяжелой полипептидных цепях. На ос­новании строения аллотипических детерминант можно различать особи внутри одного вида.

Идиотипические антигеннные детерми­нанты отражают особенности строения ан-тигенсвязывающего центра самой молекулы Ig. Они образованы V-доменами легкой и тяжелой цепи молекулы Ig. Обнаружение идиотипических антигенных детерминант послужило основанием для создания теории «идиотип-антиидиотипической» регуляции биосинтеза антител.

11.1.5.      Механизм взаимодействия антитела с антигеном

В процессе взаимодействия с антигеном принимает участие не вся молекула Ig, а лишь ее ограниченный участок — антигенсвязывающий центр, или паратоп, который лока­лизован в Fab-фрагменте молекулы Ig. Co своей стороны, антитело взаимодействует не со всей молекулой антигена сразу, а лишь с ее антигенной детерминантой.

Антитела отличает специфичность взаимо­действия, т. е. способность связываться со строго определенной антигенной детерми-нантой. Наиболее доступные для взаимодейс­твия эпитопы располагаются на поверхности молекулы антигена.

Связь антигена с антителом осуществляется за счет слабых взаимодействий (ван-дер-ва-альсовы силы, водородные связи, электроста­тические взаимодействия) в пределах анти-генсвязывающего центра. Такая связь отли­чается неустойчивостью — образовавшийся иммунный комплекс (ИК) может легко диссо­циировать на составляющие его компоненты. Поэтому взаимодействие антигена и антитела может быть представлено в виде уравнения:

[AT] + [AT] о [ИК].

Продолжительность существования иммун­ного комплекса определяется целым рядом факторов. При этом важное значение имеют особенности антитела, антигена и условия, в которых происходит их взаимодействие.

К особенностям антитела следует отнести его аффинность и авидность.

Аффинность — сила специфического взаи­модействия антитела с антигеном (или энер­гия их связи). Эта характеристика зависит от степени стерического, или пространственного, соответствия (комплементарности) структуры антигенсвязывающего центра и антигенной детерминанты. Чем выше их комплементар-ност’ь, т. е. чем больше они подходят друг другу, тем больше образуется межмолекуляр­ных связей и тем выше будет устойчивость и продолжительность жизни образовавшегося иммунного комплекса. Структурные несоот­ветствия антигенсвязывающего центра и анти­генной детерминанты существенно снижают число образующихся связей и прочность взаи­модействия антитела с антигеном. Иммунный комплекс, образованный низкоаффинными антителами, чрезвычайно неустойчив, имеет малую продолжительность существования и быстро распадается на исходные компоненты.

Установлено, что в условиях макроорганиз­ма с одной и той же антигенной детерминан-той способны одновременно прореагировать и образовать иммунный комплекс около 100 различных клонов антител. Все они будут отличаться структурой антигенсвязывающего центра и аффинностью. Аффинность антител существенно меняется в процессе иммунного ответа в связи с селекцией наиболее спе­цифичных клонов В-лимфоцитов. Наименее аффинными считаются нормальные антите­ла. По расчетам, общее число различных ан-тигенспецифических клонов В-лимфоцитов достигает 106-107.

Под термином «-авидность» понимают про­чность связывания антитела и антигена. Эта характеристика определяется аффинностью Ig и числом антигенсвязывающих центров. При равной степени аффинности наибольшей авид-ностью обладают антитела класса М, так как они имеют 10 антигенсвязывающих центров.

Особенности антигена также влияют на эф­фективность его взаимодействия с антите­лом. Так, важное значение имеют стерическая (пространственная) доступность антигенной детерминанты для антигенсвязывающего центра молекулы Ig и число эпитопов в соста­ве молекулы антигена.

Эффективность взаимодействия антитела с антигеном существенно зависит от условий, в которых происходит реакция, и прежде всего от рН среды, осмотической плотности, солевого состава и температуры среды. Оптимальными для реакции антиген—антитело являются физиологические условия внутренней среды макроорганизма: близкая к нейтральной реак-ция среды, присутствие фосфат-, карбонат-, 1 хлорид- и ацетат-ионов, осмолярность физио­логического раствора (концентрация раствора 0,15 М), а также температура (36—37 °С).

11.1.6. Свойства антител

Благодаря уникальной способности спе­цифически связываться с антигенными детерминантами, антитела выполняют в орга­низме ряд важнейших функций, как форма иммунного реагирования и фактор регуляции иммунореактивности. При этом необходимо дифференцировать эффекты специфического, высокоаффинного взаимодействия и неспецифического, низкоаффинного.

В результате специфического взаимодейс­твия эпитопа молекулы антигена с паратопом молекулы антитела может образоваться устойчивый иммунный комплекс с продол- I жительностью жизни, достаточной для проявления эффекторных свойств молекулы им­муноглобулина. Это означает, что благодаря своим уникальным способностям антитела могут оказывать прямое или опосредованное воздействие на молекулы антигена: нейтрали­зовать или маркировать антиген, вызвать его деструкцию или элиминацию.

К прямым эффектам антител относится нейтрализация. Она достигается путем связы­вания и блокирования паратопом иммуног­лобулина активного центра биологически ак­тивной молекулы, например, токсина, рецеп­тора, лекарственного препарата и пр. Эффект имеет обратимый характер в случае распада иммунного комплекса и требует подключения других механизмов иммунной защиты (фаго­цитоз, лизис). На принципе нейтрализации основан механизм действия антитоксических, противовирусных и многих других лечебных иммунных сывороток.

Энзиматическое действие антител также относится к прямым эффектам. Они связаны со стабильной областью V-домена L-цепи. Благодаря реликтовой протеазной или нук-леазной активности (см. разд. 11.1.3), имму­ноглобулины способны вызывать деструкцию молекулы антигена (например, расщепление отдельных пептидов или ДНК).

В большинстве случаев взаимодействие ан­тител с антигеном в организме не влечет за собой непосредственно нейтрализацию био­логического действия последнего, а также его разрушение или утилизацию. Прочно связы­ваясь с эпиопом, антитела «маркируют» моле­кулу антигена — обозначают его как мишень для факторов элиминации или деструкции (фагоцитоз, лизис).

К непрямым эффектам относятся:

  • активация комплемента по классическо­му пути и индукция комплемент-опосредо­ванного лизиса чужеродных клеток (см. разд. 9.2.3.3); наилучшими свойствами обладает IgM (IgM> IgG3> IgGl);
  • запуск антителозависимой клеточно-опос-редованной цитотоксичности (см. разд. 11.3);
  • опосредование гиперчувствительности не­медленного, или I типа (см. разд. 11.4);
  • индукция иммунного фагоцитоза, приво­дящая к элиминации любых форм антигена из организма (см. разд. 11.2).

Клеточно-опосредованные эффекты имму­ноглобулинов реализуются благодаря экспрес­сии на мембране иммунокомпетентных клеток рецепторов к Fc-фрагменту молекулы имму­ноглобулина (FcR). Эти рецепторы являются трансмембранными белковыми молекулами и различаются по специфичности и аффин­ности. FcR всегда специализирован к опреде­ленному изотипу тяжелой цепи молекулы Ig. Различают высокоаффинные и низкоаффин­ные FcR. Первые могут взаимодействовать с интактной молекулой иммуноглобулина, ис­пользуя ее в дальнейшем как ко-рецептор-ный фактор (базофилы, тучные клетки); вто­рые — связываются с молекулой Ig в составе иммунного комплекса. Поэтому FcR называют непрямыми иммунорецепторами.

Помимо обладания эффекторными свойс­тва, антитела являются активными регуля­торами иммунореактивности. Так, Ig слу­жат антигенспецифическими рецепторами В-лимфоцитов. Благодаря выраженной цито-фильности, они также выполняют функцию специфических ко-рецепторных факторов ба-зофилов и тучных клеток2 (см. выше).

Согласно теории «идиотип-антиидиотипи-ческого взаимодействия», антитела, специ­фичные к идиотипическим антигенным де­терминантам Ig, могут управлять силой анти­тельного иммунного реагирования.

Активное специфическое связывание высо-коиммуногенных эпитопов специфическими антителами может блокировать развитие как гуморального, так и клеточного иммунного ответа. Этот эффект используется в клини­ческой практике, например, для профилакти­ки гемолитической болезни новорожденных в результате резус-конфликта.

Вместе с тем антитела могут неспецифи­чески взаимодействовать с молекулой анти­гена за счет неспецифической адсорбции или низкоаффинного связывания. Это позволя­ет антителам наряду с другими веществами участвовать в опсонизации антигена и таким образом неспецифически ингибировать его биологическое действие.

К неспецифическим свойствам антител от­носится также их способность захватывать ионы некоторых металлов — микроэлемен­тов или тяжелых металлов, таких как ртуть и свинец. Кроме того, антитела могут взаимо­действовать с рядом суперантигенов. Однако их связывание происходит нетипично — без участия паратопа. В настоящий момент до­стоверно известно существование трех таких суперантигенов: протеина А стафилококка (SpA), gp 120 ВИЧ-1 и кишечного сиалопро-теина. Суперантигены могут нейтрализовать биологическую активность антител и потен­цировать иммунодефицитные состояния.

11.1.7. Генетика иммуноглобулинов

Молекулам Ig присуще не только уникаль­ное строение, но также и своеобразное ге­нетическое кодирование. Методами молеку­лярной генетики было доказано, что, в от­личие от других белков, структура молекулы Ig изначально контролируется не одним, а большим числом генов. Гены иммуноглобу­линов имеют фрагментарную организацию и образуют три группы, которые располагаются в трех различных хромосомах и наследуются независимо.

Первая группа генов содержит информацию о первичной аминокислотной последователь­ности легкой цепи к-типа, вторая — легкой цепи Л-типа, а третья — всех типов тяжелых цепей (а, у, 6Д и ц). Гены, относящиеся к каждой группе, находятся на соответствующей хромосоме в непосредственной близости друг от друга. Они располагаются последо­вательно (рис. 11.3) и разделены интронами (некодирующие области).

Участок ДНК, кодирующий строение легкой цепи Х-типа, содержит 2 V-сегмента (контро­лируют структуру V-доменов) и 4 С-сегмента (контролируют структуру С-доменов). Между С- и V-сегментами располагается J-сегмент (от жгл. join — соединяющий). Легкая цепь к-типа кодируется несколькими сотнями V-сегментов ДНК, 4 J-сегментами и одним С-сегментом. Группа генов, контролирующая структуру тя­желых цепей, имеет еще более сложное стро­ение. Наряду с V-, С- и J- сегментами ДНК в их состав входят 20 D-сегментов (от англ. diversityразнообразие). Кроме того, имеется М-сегмент, который кодирует биосинтез мем-бранно-ассоциированного участка молекулы рецепторного Ig.

При созревании пре-В-лимфоцитов наблю­даются мощные перестройки в их генетичес­ком аппарате. Происходит произвольное сбли­жение отдельных фрагментов ДНК и сборка в пределах соответствующих хромосом единых функциональных генов. Пропущенные учас­тки ДНК исключаются из дальнейшего счи­тывания. Этот процесс называется сплайсинг (англ. splicing — сращивание, состыковывание). С функциональных генов в дальнейшем транскрибируется про-мРНК, а затем — окон­чательная мРНК, кодирующая первичную аминокислотную последовательность L- и Н-цепей молекулы lg. Параллельно со сплайсин­гом в отдельных участках V-сегментов генов иммуноглобулинов наблюдается мутационный процесс и нематричная достройка олигонук-леотидов. Эти участки ДНК получили назва­ние гипермутабельные области.

Сплайсинг и мутационный процесс в генах lg носят случайный, стохастический характер и происходят в каждом лимфоците независимо друг от друга. Явления, происходящие в генах lg при их созревании, в бесконечное количес­тво раз повышают разнообразие V-доменов молекулы lg. Они являются причиной непов­торимой уникальности структуры паратопов и идиотипических антигенных детерминант молекулы lg, а также множественности анти­генной специфичности рецепторов В-лимфо-цитов и синтезируемых ими антител.

Таким образом, учитывая непрерывность лимфогенеза, в пределах организма уже предсу-ществуют или в любой момент могут возникнуть В-лимфоциты, специфичные к практически лю­бому антигену. Молекулярно-генетическая теория происхождения многообразия специфичностей антител была подробно разработа­на С. Тонегавой (1983). Дальнейшая дифференцировка В-лимфоцитов, которая возникает при их продуктивной ак­тивации в процессе первичного иммунного от­вета, идет параллельно с их размножением. Она также сопровождается рекомбинационными перестройками в пределах иммуноглобулино-вых генов, но уже в пределах С-сегментов. Этот процесс проявляется последовательной сменой шсса lg: если на ранних этапах дифференци-ровки В-лимфоциты синтезируют lg классов М hD, то на более поздних — классов G, А или Е (редко). Параллельно наблюдается «дрейф» (то­чечные перестройки) в V-сегментах. Это ведет к появлению вариаций в специфичности BCR и субклонированию В-лимфоцитов.

 

11.1.8. Динамика антителопродукции Способность синтезировать антитела мак­роорганизм приобретает довольно рано. Уже К на 13-й неделе эмбрионального периода раз-

вития возникают В-лимфоциты, синтезирую­щие IgM, а на 20-й неделе этот lg можно опре­делить в сыворотке крови. С этого момента в организме начинается процесс непрерывного появления новых антителопродуцирующих клеток с различной специфичностью, которые исходно формируют базальный уровень анти­тел, преимущественно изотипа М — это нор­мальные антитела. Содержание lg в сыворот­ке крови существенно меняется с возрастом, а также зависит от состояния макроорганизма. Концентрация антител достигает максимума к периоду полового созревания и сохраняется на высоких цифрах в течение всего репродук­тивного периода (период половой зрелости до старости). В старческом возрасте содержание антител снижается. Повышение количества lg наблюдается при инфекционных заболевани­ях, аутоиммунных расстройствах; снижение его отмечено при некоторых опухолях и им-мунодефицитных состояниях.

При появлении во внутренней среде мак­роорганизма антигена иммунная система реагирует усилением биосинтеза специ­фических антител, что достигается путем размножения клонов антигенспецифичных клеток-антителопродуцентов. При этом ан­тиген выступает в роли не только триггерного, но и селектирующего фактора.

Преимущество получают клоны с на­ивысшей специфичностью, т. е. наиболь­шей аффинностью рецепторных молекул lg. Параллельно с размножением идет процесс дифференцировки В-лимфоцитов. Наблюдается перестройка в геноме клеток и переключение их биосинтеза с крупной вы-сокоавидной молекулы IgM на более легкие и экономичные высокоаффинные IgG или IgA (редко IgE).

Антителопродукция в ответ на антигенный стимул имеет характерную динамику. Ее мож­но проследить на примере сывороточных lg (рис. 11.4). Выделяют латентную (индуктив­ную), логарифмическую, стационарную фазы и фазу снижения. В латентную фазу антите­лопродукция практически не изменяется и остается на базальном уровне. В этот пери­од происходит переработка и представление антигена иммунокомпетентным клеткам и запуск пролиферации антигенспецифичных клонов клеток-антителопродуцентов. Ввиду того, что клетки делятся дихотомически (т. е. надвое), прирост их численности происходит в логарифмической зависимости. Поэтому после первых циклов деления прирост числа клеток в общей массе невелик, и титры спе­цифических антител практически не изме­няются. Параллельно происходит созревание пре-В-лимфоцитов в зрелые формы, вклю­чаются процессы дифференцировки антите-лопродуцентов в плазматические клетки и переключение синтезируемых изотипов Ig.

 

 

 

Во время логарифмической фазы наблюдается интенсивный прирост количества антигенспецифичных В-лимфоцитов, что находит отражение в существенном нарастании титров специфических антител.

В стационарной фазе количество специфических антител и синтезирующих их клеток достигает максимума и стабилизируется. Освобождение макроорганизма от антигена устраняет антигенный стимул, поэтому вслед за стационарной фазой начинается фаза снижения. В этот период наблюдается постепенное уменьшение численности клонов специфических антителопродуцентов и титров соответствующих антител.

Динамика антителообразования имеет характерную временную зависимость. Она также существенно зависит от первичности или вторичности контакта с антигеном. При первичном контакте с антигеном развивается первичный иммунный ответ. Для него харак­терны длительная латентная (3-5 суток) и логарифмическая (7-15 суток) фазы. Первые диагностически значимые титры специфичес­ких антител регистрируются на 10-14-е сутки от момента иммунизации. Стационарная фаза продолжается 15-30 суток, а фаза снижения – 1-6 месяцев.

В течение первичного иммунного ответа под влиянием цитокинов Т2-хелпера происходит созревание и размножение клонов антигенепецифичных В-лимфоцитов. Ихдифференци-ровка приводит к образованию плазматичес­ких клеток. Происходит также переключение; биосинтеза Ig с изотипов М и D на G, А или I Е. В итоге первичного иммунного реагиро­вания формируются многочисленные клоны антигенспецифичных В-лимфоцитов: антителопродуцирующих клеток и В-лимфоцитов иммунологической памяти, а во внутренней среде макроорганизма в высоком титре на­капливаются специфические IgG и/или IgA (a также IgE). Таким образом обеспечивается ак­тивное противодействие иммунной системы внедрению в макроорганизм антигена и высо- . кая готовность к повторной встрече с ним.

Со временем антительный ответ угасает. Накопление в избытке свободных IgG/IgA потенцирует гибель активных антителопро-дуцентов. Элиминация антигена исключает новое стимулирование и клонообразования, а появившиеся ранее плазматические клетки имеют короткую продолжительность жизни. Вместе с тем В-лимфоциты иммунологичес­кой памяти надолго остаются циркулировать j в организме.

Повторный контакт иммунной системы с тем же антигеном ведет к формированию вторич­ного иммунного ответа (рис. 11.4). В отличие от первичного, для вторичного ответа характерна укороченная латентная фаза — от нескольких часов до 1-2 суток. Логарифмическая фа­за отличается более интенсивной динамикой прироста и более высокими титрами специ­фических антител. Для стационарной фазы и фазы снижения свойственна затяжная динамика (несколько месяцев или даже лет). При вторичном иммунном ответе организм сразу же, в подавляющем большинстве синтезирует IgG. Характерная динамика антителопродукции обусловлена подготовленностью иммунной системы к повторной встрече с антигеном за счет формирования иммунологической па мяти (см. разд. 11.5). В результате этого клоны антигенспецифичных В-лимфоцитов, оставшиеся после первичного иммунного реагирования, быстро размножаются и интенсивно

■         включаются в процесс антителогенеза.

■             Для развития гуморального иммунитета слизистых характерны те же процессы и динамика антителообразования. Однако в данном

  • случае в слизистых в подавляющем большинс-
  • твесозревают и размножаются В-лимфоциты, Щ продуцирующие полимерные молекулы IgA.

Явление интенсивного антителообразова­ния при повторном контакте с антигеном щ широко используется в практических целях, Н например при вакцинопрофилактике. Для со-здания и поддержания иммунитета на вы­соком защитном уровне схемы вакцинации предусматривают первичное введение анти­гена для формирования иммунологической памяти и последующие ревакцинации через различные интервалы времени (см. гл. 14).

Этот_же_ Леыамеынии высокоактивных лечебных и диагности­ческих иммунных сывороток {гипериммунных). Для этого животным или донорам производят многократные введения препаратов антигена по специальной схеме.

Динамика и интенсивность антителообра­зования в значительной степени зависят от иммуногенности антигена (дозы, способа и кратности его введения), а также от состояния макроорганизма. Попытка повторного введе­ния антигена в латентной фазе может привес­ти к иммунологическому параличу — имму­нологической неотвечаемости на антиген в течение определенного периода времени.

 

11.1.9. Теории разнообразия антител

Для объяснения механизмов антителопро-дукции и разнообразия специфичности анти­тел было высказано множество гипотез и тео­рий, однако лишь немногие из них получили практическое подтверждение. Большинство теорий имеют чисто историческое значение.

Первой принципиально важной концеп­цией была теория «боковых цепей», которую выдвинул П. Эрлих (1898). Согласно этой тео­рии, клетки органов и тканей имеют на своей поверхности рецепторы, способные в силу химического сродства связывать антиген и инактивировать его; связанные с антигеном рецепторные молекулы отделяются с повер­хности клетки и замещаются вновь синтези­рованными. Эта теория заложила основные представления о гуморальном иммунитете и о рецепторах иммунокомпетентных клеток.

Заслуживают внимания «инструктивные» или «матричные» теории. Согласно кон­цепциям, предложенным Ф. Брейнлем и Ф. Гауровитцем (1930), Л. Полингом (1940), антиген является матрицей, с которой штампу­ется молекула антител. Эти теории оказались тупиковыми в связи с открытием Д. Уотсоном и Ф. Криком (1953) механизма кодирования в ДНК генетической информации.

Ряд теорий исходил из предположения о предсуществовании в организме антител практически ко всем возможным антигенам (Н. Ерне, 1955; Ф. Бернет, 1959). В настоя­щее время наиболее обоснованной считается теория Ф. Бернета, которая получила назва­ние клоналъно-селекционной. Согласно дан­ной теории, лимфоидная ткань состоит из огромного числа клонов антигенореактивных клеток (лимфоцитов), которые специализи­руются на выработке антител к разнообраз­ным антигенам. Клоны возникли в ходе эво­люции в результате мутаций и селекции под влиянием антигенов и уже предсуществуют в новорожденном организме. Попавший в организм антиген селективно (избирательно) активирует специфичный к нему клон лим­фоцитов, который размножается и начинает вырабатывать специфичные к данному ан­тигену антитела. Если доза антигена велика, то клон реагирующих на него лимфоцитов устраняется (элиминируется) из организма. В соответствии с теорией Бернета, этот путь ведет к формированию в эмбриональном пе­риоде иммунологической толерантности (не­чувствительности) к собственным антигенам.

Теория Бернета объясняет многие иммуно­логические реакции (антителообразование, ге­терогенность антител, иммунологическую па­мять, толерантность), однако она не способна объяснить происхождение всего многообразия специфичности антител. Бернет предположил, что в организме существует около 10 тыс. кло­нов специфических антителопродуцирующих клеток. Однако, как показывает практика, мир антигенов на 2—3 порядка обширнее, и орга­низм отвечает на практически любой из них, в том числе и на искусственно полученный анти­ген, который не существует в природе.

Значительную ясность в представление о разно­образии специфичности антител внес С. Тонегава (1983), который дал этому явлению генетическое обоснование. Молекулярно-генетическая теория С. Тонегавы исходит из того, что в генах им­муноглобулинов постоянно происходят мощные рекомбинационные и мутационные процессы. В результате возникает огромное количество ва­риантов и комбинаций генов, которые кодируют разнообразные по специфичности иммуногло­булины. Каждый клон антителопродуцирующих лимфоцитов обладает своим уникальным вариан­том гена иммуноглобулина (см. разд. 11.1.7).

Следует также упомянуть теорию сетевой регуляции иммунной системы. Ее основой является выдвинутая Н. Ерне (1974) идея идиотип-антиидиотипического взаимодействия. Согласно этой теории, иммунная система представляет собой бесконечную цепь взаимодействующих антигенных идиотипов иммуноглобулинов и направленных к ним антиидиотипических антител. Введение антигена вызывает каскадную реакцию образования антител 1-го порядка. Это антитело, действуя как антиген, вызывает образование к своему идиотипу антител 2-го порядка. К идиотипу антител 2-го порядка синтезируются антитела 3-го порядка и т. д. При этом антитело каждого порядка как бы несет «внутренний образ» антигена, который передается эстафетно в цепи образования антиидиотипических антител.

Доказательством этой теории является обнаружение антиидиотипических антител, способных вызвать в организме иммунитет к соответствующему антигену, а также существование лимфоцитов, сенсибилизированных к антиидиотипическим антителам. С помощью теории Ерне можно понять формирование иммунологичской памяти и возникновение аутоиммунных реакций. Однако она не способна объяснить многие другие явления иммунитета: механизм иммунологического распознавания «свой-чужой», управление каскадом идиотип-антиидиотипических реакций и т. д. Данная теория не получила дальнейшего развития.

В 60-е годы XX в. выдающийся отечествен­ный иммунолог П. Ф. Здродовский сформу­лировал физиологическую концепцию имму­ногенеза — гипоталамо-адреналовую теорию регуляции иммунитета. Основная идея этой теории сводилась к тому, что продукция ан­тител подчиняется общим физиологическим законам. Ведущая роль в этом процессе при­надлежит гормонам и нервной системе.

11.2. Иммунный фагоцитоз

Феномен иммунного фагоцитоза основан на поглощении фагоцитами (см. разд. 9.2.3.1) анти­генов, входящих в состав иммунных комплексов. При этом антигенами могут быть как отдельные молекулы или их агрегаты, так и цельные клетки или их обломки. Для осуществления иммунного фагоцитоза необходимо участие молекул имму­ноглобулинов и/или комплемента. Имеющиеся на клеточной мембране фагоцитирующей клетки рецепторы к Fc-участку молекулы иммуноглобу­лина и компонентам комплемента обеспечива­ют «узнавание» и захват фагоцитом иммунных комплексов или опсонизированных антигенов. Таким образом, фагоциты участвуют в элимина­ции (удалении) антигенов из организма и восста­новлении его гомеостаза.

11.3. Опосредованный клетками киллинг

Иммунная система располагает независимым от системы комплемента способом уничтоже­ния чужеродных клеток. Эта форма иммунного реагирования осуществляется непосредственно клетками-киллерами и имеет название опосре­дованный клетками киллинг. Киллинг способ­ны осуществлять активированные фагоциты, Т-киллеры, естественные киллеры и некоторые другие клетки. Клетки-киллеры осуществляют санацию организма от чужеродных, трансфор­мированных или инфицированных клеток.

Механизм клеточно-опосредованного кил-линга достаточно универсален. Киллеры вы­рабатывают ряд веществ, обладающих цито-токсическим или цитолитическим действием: вызывают некроз нарушением целостности клеточной мембраны (или стенки) или инду­цируют апоптоз. Цитотоксические субстанции синтезируются только при активации клетки. Киллеры осуществляют свою функцию дис­тантно (на расстоянии) или при непосредс­твенном контакте. Мишенью для них явля­ются раковотрансформированные, мутантные или зараженные вирусами клетки, грибы, про­стейшие, гельминты и некоторые бактерии.

Способ распознавания киллерами генети­ческой чужеродности клеток-мишеней оп­ределяется типом его антигенсвязывающего рецептора. Различают антителозависимую и антителонезависимуюклеточно-опосредован-ную цитотоксичность.

11.3.1. Антителозависимая клеточно-опосредованная цитотоксичность

Антителозависимая клеточно-опосредованная цитотоксичность реализуется благодаря экспрессии на мембране иммунокомпетентных клеток рецепторов к Fc-фрагменту молекулы иммуноглобулина (FcR). Эти рецепторы яв­ляются трансмембранными белковыми моле­кулами и различаются по специфичности и аффинности. FcR всегда специализирован к определенному изотипу тяжелой цепи моле­кулы Ig. Различают также высокоаффинные и низкоаффинные FcR. Первые могут взаимо­действовать с интактной молекулой иммуног­лобулина, используя ее в дальнейшем как ко-ре-цепторный фактор (базофилы, тучные клетки), вторые — связываются уже с иммунным комп­лексом. Поэтому FcR называют «непрямыми» иммунорецепторами. Антителозависимую кле-точно-опосредованную цитотоксичность могут осуществлять активированные макрофаги, эо-зинофилы и естественные киллеры.

Активированные макрофаги (см. разд. 9.2.3.1) продуцируют перекисные и N0’—ион-ради­калы и ферменты, которые могут поражать мембрану (или стенку) клетки на расстоя­нии или после фагоцитирования. Первичное распознавание чужеродных клеток происхо­дит при помощи FcR по антителам, которые предварительно связались с поверхностными антигенами клеток-мишеней.

В антителозависимой клеточно-опосредо-ванной цитотоксичности принимают участие ЕК с фенотипом CD16+CD56Maj,°. На своей поверхности они несут низкоаффинный FcR к молекуле IgG, связанной антигеном в им­мунный комплекс. Этот фенотип ЕК пос­тоянно циркулирует в кровотоке и других биологических жидкостях в поиске клеток, инфицированных различными паразитами (вирусами, бактериями, простейшими) и «по­меченных» Ig. При контакте с зараженной клеткой естественный киллер индуцирует разрушение клеток-мишеней осмотическим лизисом (перфорин) или индукцией в них апоптоза (гранзимы, гранулизин).

Антителозависимая клеточно-опосредо­ванная цитотоксичность эозинофилов име­ет узкую противогельминтную ориентацию. Она реализуется благодаря наличию на их мембране низкоаффинных FcR к IgA или IgE, связанных в иммунные комплексы. При распознавании паразитов, уже «отмеченных» IgA или IgE, эозинофилы выделяют путем дегрануляции антигельминтные токсические факторы (ферменты и белковые токсины) и синтезируют цитокины, стимулирующие кле­точное звено иммунитета, а также липидные медиаторы воспаления.

11.3.2. Антителонезависимая клеточно-опосредованная цитотоксичность

Антителонезависимая клеточно-опосредо-ванная цитотоксичность осуществляется без непосредственного участия молекулы Ig. Ее индукторами являются клетки лимфоидного ряда, несущие иммунорецепторы «прямого» распознавания. К этой группе клеток отно­сятся Т-хелперы, Т-киллеры и CD16~CD56MHO‘° естественные киллеры.

Выделяют прямой и непрямой (опосредо­ванный) эффекторные механизмы антитело-независимой клеточно-опосредованной ци-тотоксичности. Прямой механизм цитотоксич-ности предполагает совмещение индукторной и эффекторной функции одной и той же клет­кой без посредников. Основной клеткой, ис­пользующей этот тип механизма, является Т-киллер (сф-тип). Эта клетка при помощи TCR распознает антиген в составе МНС I класса на мембране клеток собственного организма и определяет аллогенность клетки-мишени. Контакт зрелого активированного Т-киллера с чужеродной клеткой-мишенью запускает их цитотоксические механизмы: осмотичес­кий лизис (перфорин) и индукцию апоптоза (гранзимы, гранулизин).

Киллинг клетки-мишени осуществляется в несколько этапов:

  1. Установление плотного контакта. Т-кил-лер прикрепляется к поверхности клетки-мишени. Между клетками образуется тесный контакт, или интерфейс, с узким синаптичес-ким пространством.
  2. Активация Т-киллера. Эффекторная клет­ка при помощи своего TCR анализирует ком­плекс МНС I класса. При установлении чуже-родности этого комплекса Т-киллер активи­руется и начинает синтезировать токсические субстанции, которые накапливаются в грану­лах. Происходит полярное перераспределение внутриклеточных органелл киллера. Гранулы, содержащие токсические субстанции, и аппа­рат Гольджи перемещаются в сторону TCR, связанного с клеткой-мишенью. Это необхо­димо для обеспечения строго направленного действия.
  3. Экзоцитоз токсических субстанций. \ Содержимое гранул выделяется в узкое си-наптическое пространство между клетками путем экзоцитоза.
  4. Токсическое воздействие. В результате воздействия перфорина в мембране клетки-мишени образуются поры, способные вы­звать осмотический лизис. Через поры внутрь клетки проникают гранзимы и гранулизин и запускают апоптоз.

Точный механизм специфического распоз­навания Т-киллером мембранных антигенов клетки-мишени и направленный цитотокси-ческий удар предотвращают ошибочный лизис собственных нормальных клеток. В процессе контакта с чужеродными клетками форми­руется иммунологическая память. Повторное появление в организме клеток, несущих те же антигенные детерминанты, приводит к формированию реакции по типу вторичного иммунного ответа, т. е. киллерная активность отличается высокой интенсивностью и про­является в очень короткие сроки.

Для ЕК, имеющих фенотип CD16 CD56MHOro, свойственен другой вариант прямого цито-токсического действия. Эта клетка, получив­шая название «тканевой», не циркулирует в организме, а накапливается в портальных воротах печени и децидуальной оболочке бе­ременной матки. CD16 CD56MHOro ЕК экспрес-сирует на клеточной мембране много Fas-ли-ганда. Мишенью для этих киллеров являются активированные лимфоциты, для которых характерен синтез в большом количестве Fas-рецептора. Связывание Fas-рецептора с Fas-лигандом индуцирует в активированном лим­фоците апоптоз.

При помощи описанного механизма цито-токсичности CD 16 CD56MHOro ЕК иммунной системе удается элиминировать из организма лимфоциты, позитивно прореагировавшие на пищевые и эмбриональные аллоантигены. Это позволяет избежать развития пищевой аллергии или невынашивания беременности.

Подобный эффект также свойствен для Т-киллеров и Т1-хелперов. Элиминация ак­тивированных лимфоцитов путем индукции в них апоптоза — один из эффективных путей иммунорегуляции в периферических тканях, широко используемый иммунокомпетентны-ми клетками.

Непрямой механизм цитотоксического эффекта характерен для Т-хелперов. При помо­щи TCR эти клетки способны распознать чу­жеродные антигены в составе МНС II класса. Однако сами они не являются эффекторами. Т1-хелпер активирует макрофаг, включая его цитотоксические свойства, а Т2-хелпер — эозинофил.

 

11.4. Реакции гиперчувствительности

В ряде случаев введение антигена в организм может индуцировать аномальную гиперерги-ческую реакцию, которая носит черты патоло­гического процесса и является прямой проти­воположностью иммунологической толеран­тности. Эта необычная форма реагирования, основу которой составляют естественные фи­зиологические механизмы, получила название аллергия (от греч. alios — иной и ergonдейс­твие). Изучает аллергию самостоятельная на­ука— аллергология. Соответственно антигены, вызывающие аллергические реакции, получи­ли название аллергены.

Впервые понятие «аллергия» было введено в практику французским ученым К. Пирке (1906). Он понимал аллергию как изменен­ную реакцию макроорганизма на повторное введение антигена и относил к ней как гипер-, так и гипореактивность.

Современное определение понимает ал­лергию как повышенную извращенную спе­цифическую реакцию макроорганизма на повторный контакт организма с антигеном (аллергеном).

Для формировании аллергии необходима предварительная сенсибилизация макроорга­низма к аллергену, или аллергизация. Ее мож­но вызвать очень малой, субиммунизирующей дозой антигена (например, введением морской свинке 0,000001 мл лошадиной сыворотки), которая получила название сенсибилизирующей. Повторное введение того же антигена через определенный промежуток времени вызывает аллергическую реакцию. Дозу антигена, вызы­вающую собственно аллергическую реакцию, называют разрешающей.

В развитии аллергической реакции выделя­ют три стадии: иммунологическую, патохи-мическую и патофизиологическую. В течение иммунологической стадии в ответ на аллерген образуются антигеночувствительные клетки, специфические антитела и иммунные ком­плексы. Патохимическая стадия характери­зуется образованием медиаторов воспаления и биологически активных аминов, которые играют основную роль в механизме аллерги­ческих реакций. В течение патофизиологичес­кой стадии проявляется клиническая картина аллергической реакции. Как правило, клини­ческие проявления аллергии полиморфны.

Первая классификация аллергий была пред­ложена Р. Куком в 1947 г. В ее основу было положено время развития аллергической реак­ции. Былы выделены гиперчувствительность немедленного (ГНТ) и замедленного (ГЗТ) ти­па. Сравнение свойств ГНТ и ГЗТ представле­но в табл. 11.2 на с. 256. К ГНТ были отнесены аллергические реакции, проявляющиеся уже через 20—30 мин после повторной встречи с аллергеном, тогда как реакции ГЗТ возникают через 6—8 ч и позже. Механизмы и клиничес­кие проявления ГНТ и ГЗТ различны. ГНТ связана с выработкой специфических антител (опосредована В-звеном иммунитета). При по­мощи специфических антител или клона ан-тигенореактивных В-лимфоцитов аллергиза-цию можно перенести от больного здоровому. Возможна специфическая десенсибилизация пациента, которая в ряде случаев дает стойкий эффект. ГЗТ опосредована клеточным звеном иммунитета. Перенос аллергизации от боль­ного здоровому возможен только с клеточным пулом. Специфическая терапия, как правило, оказывается неэффективной.

ГНТ была описана в 1902—1905 гг. француз­скими учеными Ш. Рише и Ж. Портье и рус­ским ученым Г. П. Сахаровым. Они показали, что ГНТ имеет стереотипное течение, которое может заканчиваться смертью. Она может проявляться в виде анафилаксии, атопических болезней, сывороточной болезни, фено­мена Артюса (см. разд. 12.4.3). Явление ГЗТ было установлено Р. Кохом (1890). Этот тип аллергии может протекать в виде контактной аллергии, реакции на кожно-аллергическую пробу, замедленной аллергии к белкам.

Изучение молекулярных механизмов аллер­гии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллер­гии: анафилактический (I тип), цитотоксичес-кий (II тип), иммунокомплексный (III тип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый — к ГЗТ. Сравнительная характеристика механиз­мов указанных типов аллергий приведена в табл. 11.3 (с. 256, 257), из которой видно, что ведущую роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ — лимфоидно-макрофа-гальная реакция.

Аллергическая реакция I типа связана с биологическими эффектами IgE и G4, на­званных реагинами, которые обладают цито-фильностью — сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает деграну-ляцию базофила и тучной клетки — залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. Их действие практически мгновенно, но крат­ковременно, включает ряд органо-тканевых патофизиологических реакций, связанных с сокращением гладкой мускулатуры кишеч­ника, бронхов, мочевого пузыря и активаци­ей секреторных, эндотелиальных и некото­рых других клеток. В результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез.

Наиболее ярко аллергическая реакция I ти­па проявляется в клинической картине ана­филактического шока. Инъекция сыворотки крови больного с аллергией I типа здоровому лицу переносит ему специфический реагин и делает на определенное время сенсибили­зированным. На этом феномене основан эффект реакции Прауснитца—Кюстнера, ранее использовавшейся для диагностики аллергии: контакт тест-пациента с аллергеном вызывал у него анафилаксию.

Цитотоксические антитела (IgG, IgM), на­правленные против поверхностных структур (антигенов) соматических клеток макроорга­низма, связываются с клеточными мембра­нами клеток-мишеней и запускают различ­ные механизмы антителозависимой цитоток-сичности (аллергическая реакция II типа). Массивный цитолиз сопровождается соот­ветствующими клиническими проявлениями. Классическим примером является гемолити­ческая болезнь в результате резус-конфликта или переливания иногруппной крови.

Цитотоксическим действием обладают так­же комплексы атиген—антитело, образующи­еся в организме пациента в большом количес­тве после введения массивной дозы антигена (аллергическая реакция III типа). Чрезмерное количество циркулирующих иммунных ком­плексов не может быть быстро утилизировано стандартными механизмами фагоцитирующих клеток. Фиксируясь на эндотелии сосудов, в клубочках почек и других тканях, иммунные комплексы инициируют антителозависимую клеточно-опосредованную цитотоксичность. сопровождающуюся воспалительной реакци­ей. В связи с кумулятивным эффектом клини­ческая симптоматика аллергической реакции III типа имеет отсроченную манифестацию, иногда на срок более 7 суток. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений от применения иммунных гетерологичных сы­вороток с лечебно-профилактической целью {«сывороточная болезнь»), а также при вдыха­нии белковой пыли («легкое фермера»).

ГЗТ представляет собой лимфоидно-макро-фагальную реакцию, которая развивается в ре­зультате иммунной активации макрофагов под влиянием лимфоцитов, сенсибилизированных к аллергену. Основу ГЗТ составляют нормаль­ные механизмы иммунного воспаления.

Для иммунной активации макрофага необходимы два воздействия: контактное и цитокиновое. Контактная стимуляция — результат рецептор-лигандного взаимо­действия макрофага, несущего рецепторную молекулу CD40, и Т1-хелпера, экспрессирующего СО40-лиганд.

В исключительных случаях эту функцию может вы­полнять Т2-хелпер. Цитокиновая активация макро­фага осуществляется у-ИФН, который продуцируют Т1-хелперы, Т-киллеры или естественные киллеры. Кроме того, макрофаг может быть стимулирован Л ПС (через С014-рецепторную молекулу). Ингибиторами активации макрофага являются продукты Т2-хелпера: ИЛ-4, -10, -13 и другие иммуноцитокины.

Иммунная активация макрофага резко повышает его эффективность в осуществлении антителозависимой клеточно-опосредованной цитотоксичности и иммун­ного фагоцитоза, т. е. деструкции и элиминации анти­гена. В процессе санации очага макрофаг при помощи цитокинов стимулирует иммуногенез, а также фиброз и ангиогенез. Последние необходимы для восстановления тканевой альтерации. В случае неспособности макрофага элиминировать патоген (например, микобактерии), на месте внедрения формируется гранулема. Это патологи­ческое образование с центрально расположенным воз­будителем, окруженным фиброзной тканью. По перисре-рии образуется макрофагальный инфильтрат вплоть до макрофагально-синцитиального вала. Неэф(рективный ангиогенез ведет к трофической недостаточности грану­лемы, и тогда она некротизируется («казеозный некроз»). Лабораторная диагностика аллергии при ал­лергических реакциях I типа основана на вы-Iявлении суммарных и специфических реагинов (IgE, IgG4) в сыворотке крови пациента. При аллергических реакциях II типа в сыворотке крови определяют цитотоксические антитела (антиэритроцитарные, антилейкоцитарные, антитромбоцитарные и др.). При аллергических реакциях III типа в сыворотке крови выявляют иммунные комплексы. Для обнаружения аллер­гических реакций IV типа применяют кожно-адлергические пробы, которые широко исполь­зуют в диагностике некоторых инфекционных и паразитарных заболеваний и микозов (тубер­кулез, лепра, бруцеллез, туляремия и др.). Лечение аллергий основано на десенси­билизации макроорганизма малыми субим-мунизирующими дозами аллергена, который вводится в макроорганизм в течение продол­жительного периода времени для индукции низкодозовой иммунологической толерант­ности (см. разд. 11.6). В тяжелых случаях при­меняют глюкокортикоидную терапию. Реакции гиперчувствительности имеют так­же большое значение и в норме. Их механизмы лежат в основе воспаления, которое способс-

твует локализации инфекционного агента или иного антигена в пределах определенных тка­ней и формированию полноценной иммунной реакции защитного характера.

Реакции гиперчувствительности следует от­личать от гиперергического типа иммунного реагирования организма, который может быть обусловлен как вариациями нейрогуморальной регуляции, так и некоторыми врожденными особенностями. Например, новозеландскую черную линию мышей от рождения отличает гипериммуноглобулинемия, а среди рыжеволо­сых людей часто наблюдается эозинофилия.

11.5. Иммунологическая память

При повторной встрече с антигеном орга­низм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название имму­нологической памяти.

Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обуслов­лена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

На сегодняшний день рассматривают два наиболее вероятных механизма формирова­ния иммунологической памяти. Один из них предполагает длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген.

Другой механизм предусматривает, что в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2—3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениями вакцинно­го препарата — ревакцинациями (см. гл. 14).

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию — криз отторжения.

11.6. Иммунологическая толерантность

Иммунологическая толерантность — явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпе-тентных клеток к определенному антигену.

Открытию иммунологической толеран­тности предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых те­лят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмени­ваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов — своими и чу­жими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление было названо эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение.

Собственнофеномениммунологическойтоле-рантности был открыт в 1953 г. независимо чеш­ским ученым М. Гашеком и группой английских исследователей во главе с П. Медаваром. Гашек в опытах накуриных эмбрионах, а Медавар — на новорожденных мышатах показали, что орга­низм становится нечувствительным к антигену при его введении в эмбриональном или раннем постнатальном периоде.

Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогеннос-тью обладают полисахариды.

Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличает­ся специфичностью — она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизмаитолерогена. Так, на проявление толерантности влияет возраст и состояние имму нореактивности организма. Иммунологическую толерантность легче индуцировать в эмбрио­нальном периоде развития и в первые дни после рождения, лучше всего она проявляется у жи­вотных со сниженной иммунореактивностью и с определенным генотипом.

Из особенностей антигена, которые опреде­ляют успешность индукции иммунологичес­кой толерантности, нужно отметить степень его чужеродности для организма и природу, дозу препарата и продолжительность воздейс­твия антигена на организм. Наибольшей толе-рогенностью обладают наименее чужеродные по отношению к организму антигены, имею­щие малую молекулярную массу и высокую гомогенность. Легче всего формируется то­лерантность на тимуснезависимые антигены, например, бактериальные полисахариды.

Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. При этом наблюдается прямая зависимость между до­зой вещества и производимым им эффек­том. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы­сокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость.

В эксперименте толерантность возникает че­рез несколько дней, а иногда часов после вве­дения толерогена и, как правило, проявляется в течение всего времени, пока он циркулирует в организме. Эффект ослабевает или прекра­щается с удалением из организма толерогена. Обычно иммунологическая толерантность на­блюдается непродолжительный срок — всего несколько дней. Для ее пролонгирования необ­ходимы повторные инъекции препарата.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности:

  1. Элиминация из организма антигенспеци-фических клонов лимфоцитов.
  2. Блокада биологической активности им-мунокомпетентных клеток.
  3. Быстрая нейтрализация антигена анти­телами.

Элиминация и делеции подвергаются, как пра     )ны аутореактивных Т- и В-лимфоцицитах стадиях их онтогенеза. Актриьгигенспецифического рецептора (п < CR) незрелого лимфоцита индуцирует апоптоз. Этот феномен, обеспечивает в организме ареактивность к аутоантигенам, получил название централь­ной толерантности.

Основная роль в блокаде биологической ак­тивности иммунокомпетентных клеток прина­длежит иммуноцитокинам. Воздействуя на соот­ветствующие рецепторы, они способны вызвать ряд «негативных» эффектов. Например, проли­ферацию Т- и В-лимфоцитов активно тормо­зит (3-ТФР. Дифференцировку ТО-хелпера в Т1 можно заблокировать при помощи ИЛ-4, -13, а в Т2-хелпер — у-ИФН. Биологическая активность макрофагов ингибируется продуктами Т2-хелпе-ров (ИЛ-4, -10, -13, (3-ТФР и др.).

Биосинтез в В-лимфоците и его превраще­ние в плазмоцит подавляется IgG. Быстрая инактивация молекул антигена антителами предотвращает их связывание с рецепторами иммунокомпетентных клеток — элиминиру­ется специфический активирующий фактор.

Возможен адаптивный перенос иммуноло­гической толерантности интактному живот­ному путем введения ему иммунокомпетент­ных клеток, взятых от донора. Толерантность можно также искусственно отменить. Для этого необходимо активировать иммунную систему адъювантами, интерлейкинами или переключить направленность ее реакции им­мунизацией модифицированными антиге­нами. Другой путь — удалить из организма толероген, сделав инъекцию специфических антител или проведя иммуносорбцию.

Феномен иммунологической толерантнос­ти имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка ор­ганов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патоло­гических состояний, связанных с агрессив­ным поведением иммунной системы.

 

Таблица 11.1. Основные характеристики иммуноглобулинов человека

ХарактеристикаIg MIg GIg AIg DIg E
Молекулярная масса, кДа900150260185190
Количество мономеров511-311
Валентность1022-622
Уровень в сыворотке крови, г/л0,5-1,98,0-17,01,4-3,20,03-0,20,002-0,004
Период полураспада, сут525632
Связывание комплемента+++++
Цитотоксическая активность+++++
Опсонизация+++++
Преципитация+++++
Агглютинация++++++
Участие в анафилактических реакциях++++++
Наличие рецепторов на лимфоцитах+++++
Прохождение через плаценту+
Наличие в секретах в секреторной форме+/-+
Поступление в секреты путем диффузии+++++

 

Таблица 11.2. Свойства Г Н Т и Г ЗТ (по Куку, 1947)

ПоказательГ Н ТГ З Т
Время развития реакцииМенее 20-30 минБолее 6-8 ч
Фактор индукцииАнтителаТ-лимфоциты
Фактор переноса в интактный организмПассивный (антителами) и адаптивный (иммунокомпетентными клетками)Адаптивный (иммунокомпетентными клетками)
ДесенсибилизацияВозможнаНевозможна

 

Таблица 11.3. Классификация аллергических реакций по патогенезу (по Джеллу и Кумбсу, 1968)

Тип реакцииФактор патогенезаМеханизм патогенезаПример клинического проявления
I, анафилактический (ГНТ)IgE, IgG4Образование рецепторного комплекса Ig E (G4)-FсR тучных клеток и базофилов→

Взаимодействие эпитопа аллергена с рецепторным комплексом →

Активация тучных клеток и базофилов→

Высвобождение медиаторов воспаления и других биологически активных веществ

Анафилаксия, анафилактический шок, поллинозы
II, цитотоксический (ГНТ)IgМ, IgGВыработка цитотоксических антител→

Активация антителозависимого цитолиза

Лекарственная волчанка, аутоиммунная гемолитическая болезнь, аутоиммунная тромбоцитопения
III, иммунокомплексный (ГНТ)IgМ, IgGОбразование избытка иммунных комплексов→

Отложение иммунных комплексов на базальных мембранах, эндотелии и в соединительной строме→

Активация антителозависимой клеточно-опосредованной цитотоксичности→

Запуск иммунного воспаления

Сывороточная болезнь, системные заболевания соединительной ткани, феномен Артюса, «легкое фермера»
IV клеточно-опосредованный (ГЗТ)Т-лимфоцитыСенсибилизация Т-лимфоцитов→

Активация макрофага→

Запуск иммунного воспаления

Кожно-аллергическая проба, контактная аллергия, белковая аллергия замедленного типа, туберкулез, бруцйеллез

 

ГЛАВА 12. ОСОБЕННОСТИ ИММУНИТЕТА ПРИ РАЗЛИЧНЫХ ЛОКАЛИЗАЦИЯХ И СОСТОЯНИЯХ

12.1. Особенности местного иммунитета

Как было отмечено ранее, в структуре сис­темы иммунной защиты выделяют местный иммунитет, концепцию которого впервые высказал A.M. Безредка (1919). В отличие от общего, местный иммунитет формирует­ся в пределах кожных покровов и слизис­тых, имеющих обширную область контакта с окружающей средой и являющихся наиболее вероятными входными воротами экзогенных антигенов. Основная задача местного имму­нитета — обеспечение местной, локальной им­мунной защиты в пределах ткани. Кроме того, факторы местного иммунитета могут действо­вать экстракорпорально (выходить за пределы макроорганизма) — на поверхности кожных покровов и в составе секрета слизистых.

Система местного иммунитета не имеет вы­раженного анатомо-морфологического обо­собления. Между общим и местным имму­нитетом существует тесная связь. Во-первых, система общего иммунитета является резерв­ным источником факторов защиты. При на­рушении микроциркуляции локальный вос­палительный процесс быстро переходит в за­тяжную септическую форму. Во-вторых, при развитии инфекционного процесса отчетливо прослеживается взаимный переход местной и общей иммунной реакции одна в другую. В-третьих, между этими двумя системами постоянно осуществляется обмен факторами иммунитета (антитела, клоны антигенреак-тивных лимфоцитов и др.). Это важно для распространения по всему организму имму­нологической памяти (см. гл. 11, разд. 11.5), но также зачастую приводит к генерализации инфекции. Тем не менее система местного иммунитета функционирует достаточно обо­собленно и имеет ряд особенностей.

 

12.1.1. Иммунитет кожи

Кожа выполняет пограничную функцию. Как фак­тор механической защиты, она предохраняет макроорганизм от внешних воздействий и в случае повреж­дения способна самостоятельно его ликвидировать, восстановив свою целостность. Кожный покров име­ет также физико-химическую защиту в виде потовых и сальных желез, продукты которых обладают бакте-рицидностью. Кроме того, кожа наделена эффектив­ной системой местного иммунного реагирования.

Внешний слой кожи, эпидермис, формируется эпи­телиальными клетками — кератиноцитами. Эти клет­ки образуют несколько слоев. В толще кератиноцитов встречаются дендритные клетки двух типов: клетки Лангерганса и клетки Гренстейна. В тканях дермы и эпидермиса локализуются лимфоциты и тучные клет­ки. Лимфоидная популяция представлена в основном Т2-хелперами и Т-киллерами. В дерме и эпидермисе происходит дифференцировка незрелых Т-лимфоци-тов в зрелые клетки.

Кератиноциты — немигрирующие эпителиальные клетки, выполняющие в коже важную иммуноре-гуляторную функцию. На своей поверхности они экспрессируют МНС II класса, ко-стимулирующие молекулы CD40, 80, 86 и Fas-лиганд. Клетки синтези-руют широкий спектр цитокинов: ИЛ-1, -3, -6, -7, -8, -15, ФНО, (3-ТФР, ГМ-КСФ, а-, (3-ИФН, хемокины.

В покоящемся, неактивированном состоянии ке­ратиноциты обеспечивают только барьерную функ­цию, не связанную с индукцией иммунного ответа. Повреждающие кожу воздействия (травма, ожог, облучение, воспалительная реакция и пр.) или стимуля­ция со стороны иммунокомпетентных клеток активируют иммунорегуляторные свойства кератиноцитов. Они становятся способными презентировать антиген Т-хелперам, а благодаря синтезируемым цитоки-нам — активировать антительный иммунный ответ и супрессировать местную клеточную пролиферацию иммунных лимфоцитов.

Клетки Лангерганса — мигрирующие клеточные элементы, дендритные клетки миелоидной природы, или белые отростчатые эпидермоциты. Происходят из клеток костного мозга или циркулирующих ми-оноцитов, трансформируясь в дерме под действием цитокинов. Продолжительность жизни около 20 суток. УФ-излучение губительно действует на них.

Экспрессируют на клеточной мембране МНС II клас­са, CD4, 40, синтезируют ИЛ-1, -12, а-, В-ИФН, ГМ-КСФ, хемокины.

Клетки Лангерганса выполняют функции АПК. Между тем процесс запуска ими иммунного ответа двухэтапный — он разобщен в пространстве и време­ни. Клетки способны захватывать и процессировать антиген. Однако на этом этапе дифференцировки клетки Лангерганса не способны экспрессировать полный набор ко-стимулирующих факторов, у них отсутствуют молекулы CD80, 86.

Локальная воспалительная реакция или цито-киновые стимулы активируют клетки Лангерганса. Захватившая антиген клетка мигрирует с током лимфы в регионарные лимфоузлы, где она дифференцируется в зрелую дендритную клетку — интердигитальную клет­ку лимфоузлов. Дифференцировка сопровождается изменением мембранного фенотипа — клетка начина­ет экспрессировать недостающие молекулы CD80, 86, а также синтезировать цитокины. Интердигитальная клетка теряет способность захватывать и процессиро­вать антиген, но при этом превращается в эффектив­ную АПК. Она активирует Т-хелперы и запускает спе­цифический иммунный ответ и формирование клеток иммунологической памяти.

Разобщение в пространстве и времени индукции в коже специфического иммунного ответа имеет важ­ное значение. Презентация антигена в лимфати­ческом узле сопрягает систему местного и общего иммунитета. Централизованное размножение клеток иммунологической памяти и их расселение вдоль всех кожных покровов обеспечивают местный имму­нитет кожи независимо от его инициации.

В случае инактивации клеток Лангерганса (напри­мер, УФ-облучением) функции АПК в коже начина­ют выполнять кератиноциты и клетки Гренстейна. Однако они потенцируют иммуносупрессию — угне­тение кожной иммунореактивности.

Антитела в коже не имеют большого значения, в эпидермисе нет В-лимфоцитов. Между тем развитие кожной иммунореактивности может сопровождаться антителогенезом. В коже развивается преимущественно клеточной иммунный ответ. Напряженность местного иммунитета в коже, также как и интегральное состоя­ние клеточного звена иммунитета в целом, диагности­руется постановкой кожно-аллергических проб.

 

12.1.2. Иммунитет слизистых

Местный иммунитет слизистых обеспечивает им­мунную защиту желудочно-кишечного и респираторного тракта и мочеполовой системы. Слизистые отличаются развитой лимфоидной тканью и высокой насыщенностью иммунокомпетентными клетками.

Лимфоидный состав слизистых имеет характерные особенности, обусловленные его формированием. Различают раннюю (реликтовую) и позднюю (совре­менную) компоненты. Ранняя компонента представ­лена убТ- и В1-лимфоцитами, которые на ранних этапах эмбриогенеза отселяются в периферические лимфоидные образования прямо из костного мозга и в дальнейшем развиваются автономно от централь­ных органов иммунной системы. Антигенные рецеп­торы этих клеток отличаются относительно низкой аффинностью, но обладают достаточно широким спектром чувствительности. Это позволяет им обес­печить первую линию защиты от микробной агрес­сии и необходимую отсрочку для активации поздней компоненты.

Клетки поздней компоненты заселяют слизистые гораздо позже ранней и развиваются под полным контролем со стороны центральных органов иммун­ной системы. К их числу относятся традиционные аВТ- и CD5″ В-лимфоциты, обладающие высокой специфичностью и аффинностью рецепторного ап­парата. Лимфоидные популяции поздней компо­ненты создают вторую линию иммунной защиты в слизистых, которая формирует высокоэффективный специфический иммунный ответ.

Наиболее ярким примером организации иммунной защиты слизистых является высокоразвитая лимфоидная система желудочно-кишечного тракта. В ней различают две функциональные зоны — индуктив­ную и эффекторную.

Индуктивная зона сформирована лимфоидными фолликулами (в том числе аппендикса, пейеровых бляшек), в которых идентифицируются области пре­имущественного расселения Т- и В-лимфоцитов. Например, в В-области располагается герминативный (зародышевый) центр, где размножаются и созревают В-лимфоциты. Индуктивная зона практически полно­стью состоит из равных количеств Т- и В-лимфоцитов. Т-популяция на 2/3 представлена Т-киллерами и на ‘/3 — Т-хелперами. В-лимфоциты — это в основном IgA-продуценты. Кроме того, в зоне обнаруживаются макрофаги и дендритные клетки.

Презентацию антигена, в основном, осуществляют дендритные клетки — короткоживущие (до 3 сут) клеточные элементы миелоидного происхождения. Эту же функцию могут выполнять макрофаги и В-лимфоциты. Помощь в презентации антигена оказывают М-клетки эпителия. Они захватывают моле­кулы антигена в просвете органа и путем трансцитоза переносят его к АП К.

В индуктивной зоне осуществляется:

  • презентация и распознавание антигена,
  • индукция иммунного реагирования,
  • формирование клонов антигенспецифич-ных Т-и В-лимфоцитов,
  • дифференцировка В-лимфоцитов в IgA-продуценты.

Эфферентная зона включает околоэпителиальную область, где располагаются интраэпителиальные лимфоциты, и область lamina propria. Популяция интраэпителиальных лимфоцитов на 3/4 состоит из Т-киллеров, среди которых много убТ-лимфоци-тов. Они обеспечивают функцию иммунологическо­го надзора за быстроразмножающимся эпителием. Презентируют антиген энтероциты. В активирован­ном состоянии они экспрессируют МНС II класса, синтезируют цитокины и хемокины (ИЛ-8). Однако энтероциты являются «неклассическими» АПК.

В lamina propria обнаруживается много Т- и В-лимфоцитов, а также макрофаги и естественные киллеры. На долю Т-лимфоцитов приходится до 60 % всей лим-фоидной популяции. На 2/3 это Т-хелперы, остальные клетки — Т-киллеры, в том числе уЫ-лимфоциты. Объем пула В-лимфоцитов достигает 40 %, половину из их числа составляют В1-клетки. Подавляющее большинство антителопродуцентов (80 %) синтезирует полимерные молекулы IgA.

В lamina propria развивается преимущественно антительный ответ. Идет интенсивный биосинтез иммуноглобулинов классов А, М, G, и Е. Они дейс­твуют как в пределах самих тканей, так и в составе секрета слизистых, куда проступают в результате на­правленного транспорта (slg) или диффузии. Однако наибольшую функциональную нагрузку несет slgA (см. гл. 11, разд. 11.1.3), хорошо защищенный от про-теолитических ферментов секрета.

В собственной пластинке присутствует большое количество фагоцитов. Привлеченные хемоаттрактан-тами, они способны совершать маятникообразные миграции: выходить через эпителий за его пределы (в просвет кишки, бронха, ротовой полости и т. д.) и воз­вращаться обратно. Подсчитано, что в ротовой полос­ти постоянно присутствует около 100 000 фагоцитов.

В пределах слизистых обнаруживается много туч­ных клеток и эозинофилов. Синтезируя вазоактив-ные амины (тучная клетка), токсины (эозинофил), ферменты, иммуноцитокины, липидные медиаторы и другие биологически активные вещества, они участвуют в регуляции иммунной и воспалительной реакции в пределах ткани. В случае гиперпродукции IgE и особой генетической предрасположенности тучные клетки потенцируют развитие аллергической реакции I типа (анафилаксия).

Сами эпителиоциты также принимают участие в \ осуществлении местного иммунитета. Они представ­ляют собой хороший механический барьер для пато­генов. Секрет слизистых также выполняет функции физико-химического барьера (см. гл. 9, разд. 9.2.1), а нормальная микрофлора, населяющая слизистые, -биологического, обеспечивая колонизационную ре­зистентность (см. разд. 9.2.3).

12.1.2.1. Особенности иммунитета ротовой полости

Организация иммунной защиты ротовой полости принципиально не отличается от описанной выше системы местного иммунитета слизистых. Она удач­но сочетает как факторы неспецифической резис­тентности, так и специфические иммунные факторы, обеспечивающие эффективную защиту полости рта от кариесогенных и иных болезнетворных микробов.

Неспецифические факторы резистентности рото­вой полости представлены в основном барьерными свойствами клеток слизистой оболочки и антимик­робной функцией слюны. Последняя занимает осо­бое положение в структуре защиты макроорганизма от микробной интервенции.

В течение суток слюнные железы макроорганиз­ма взрослого человека выделяют до 2,0 л секрета с выраженной энзиматической активностью. Слюна представляет собой не только мощный физико-хи­мический барьер, трудно преодолимый патогенами. Она также содержит широкий набор факторов, обла­дающих выраженными бактерицидными свойствами. В первую очередь, это лизоцим и лактоферрин, а также лактопероксидаза и отдельные компоненты комплемента. Кроме того, в слюне здоровых людей постоянно присутствуют клеточные элементы, обес­печивающие биологический барьер: полиморфно-ядерные лейкоциты и моноциты. Одномоментно в слюне ротовой полости содержится до 100 000 фаго­цитирующих клеток.

В соединительнотканной строме ротовой полости также обнаруживаются клеточные элементы системы неспецифической резистентности: активно мигриру­ющие тканевые макрофаги, фибробласты, грануло-циты и тучные клетки.

Ротовая полость обеспечена эффективной системой специфической иммунной защиты. Анатомически она представлена мощными миндалинами глоточно­го кольца, хорошо развитой системой лимфоидного дренирования в подчелюстных, подъязычных, око­лоушных и шейных лимфоузлах. В тканях обнаружи­ваются лимфоидные скопления, а в слюне — лимфо­циты и широкий спектр иммуноглобулинов изотипов A,M,G, иЕ.

В слюне, как и в других секретах, доминирует IgA. Здесь его содержится заметно больше, чем в сыворот­ке крови. Наибольшую функциональную нагрузку несет секреторная форма IgA (slgA). Содержание IgM, IgG и IgE в слюне несколько меньше, чем в сы­воротке крови. Однако иммуноглобулины этих изо­типов также участвуют в иммунной защите ротовой полости. Снижение содержания в слюне иммуногло­булинов, особенно IgA, чревато гнойно-воспалитель­ными или аллергическими заболеваниями слизистой этого анатомического образования.

 

12.2. Особенности иммунитета при различных состояниях

Реакция макроорганизма на антигены до­статочно однотипна, так как она ограниче­на набором факторов иммунной защиты и физиологическими возможностями самого макроорганизма. Однако в зависимости от природы антигена иммунная система не обя­зательно должна включать для его устранения весь’имеющийся арсенал — в отношении кон­кретного антигена достаточно использовать лишь наиболее эффективные механизмы и факторы защиты. Поэтому при воздействии различных по природе и свойствам антиге­нов иммунное реагирование макроорганизма имеет свои особенности.

 

12.2.1. Особенности иммунитета при бактериальных инфекциях

Иммунная реакция макроорганизма в ответ на бактериальную инфекцию в значительной степени определяется факторами патогенное -ти микроба и, в первую очередь, его способ­ностью к токсинообразованию. Различают антибактериальный (против структурно-фун­кциональных компонентов бактериальной клетки) и антитоксический (против белковых токсинов) иммунитет.

Основными факторами антибактериальной защиты в подавляющем большинстве случа­ев являются антитела и фагоциты. Антитела эффективно инактивируют биологически ак­тивные молекулы бактериальной клетки (ток­сины, ферменты агрессии и др.), маркируют их, запускают механизм антителозависимого бактериолиза и участвуют в иммунном фаго­цитозе. Фагоциты осуществляют фагоцитоз, в том числе иммунный, внеклеточный киллинг патогена при помощи ион-радикалов и анти-телозависимый бактериолиз.

Ряд бактерий, относящихся к факультатив­ным внутриклеточным паразитам, отличает­ся повышенной устойчивостью к действию комплемента, лизоцима и фагоцитов (неза­вершенный фагоцитоз). К их числу отно­сятся микобактерии, бруцеллы, сальмонел­лы и некоторые другие. В отношении этих микробов антитела и фагоциты недостаточно эффективны, а сам инфекционный процесс имеет склонность к хроническому течению. В такой ситуации макроорганизм вынужден переключать нагрузку на клеточное звено им­мунитета, что ведет к аллергизации организма по типу ГЗТ. Особое значение приобретают активированный макрофаг и естественный киллер, осуществляющие антителозависимую клеточно-опосредованную цитотоксичность, а также убТ-лимфоцит.

Кроме перечисленных, на внедрившиеся бактерии воздействует весь арсенал факторов неспецифической резистентности. Среди них важная роль в борьбе с грамположительными микробами принадлежит лизоциму и белкам острой фазы (С-реактивному и маннозосвя-зывающему протеинам).

Напряженность специфического антибак­териального иммунитета оценивают в сероло­гических тестах по титру или динамике титра специфических антител, а также состоянию клеточной иммунореактивности (например, по результатам кожно-аллергической пробы).

 

12.2.2. Особенности противовирусного иммунитета

Иммунная защита макроорганизма при ви­русных инфекциях имеет особенности, обус­ловленные двумя формами существования вируса: внеклеточной и внутриклеточной.

Основными факторами, обеспечивающими противовирусный иммунитет, являются спе­цифические антитела, Т-киллеры, естествен­ные киллеры, интерферон и сывороточные ингибиторы вирусных частиц.

Специфические противовирусные антитела способны взаимодействовать только с внекле­точным вирусом, внутриклеточные структуры прижизненно для них недоступны. Антитела нейтрализуют вирусную частицу, препятствуя ее адсорбции на клетке-мишени, инфици­рованию и генерализации процесса, а также связывают вирусные белки и нуклеиновые кислоты, которые попадают в межклеточ­ную среду и секреты после разрушения за­раженных вирусами клеток. Образовавшиеся иммунные комплексы элиминируются пу­тем иммунного фагоцитоза. Специфическое связывание антител с вирусными белками, экспрессированными на ЦПМ инфициро­ванных клеток, индуцирует цитотоксическую активность естественных киллеров (см. гл. 11, разд. 11.3.1).

Клетки, инфицированные вирусом и при­ступившие к его репликации, экспрессиру-ют вирусные белки на цитоплазматической мембране в составе молекул антигенов гис-тосовместимости — МНС I класса (см. гл. 10, разд. 10.1.4.2). Это является сигналом для активации Т-киллеров, которые распознают зараженные вирусом клетки и уничтожают их (см. гл. 11, разд. 11.3.2).

Мощным противовирусным действием об­ладает интерферон (см. гл. 9, разд. 9.2.3.5). Он не действует непосредственно на внутрикле­точный вирус, а связывается с рецептором на мембране клетки и индуцирует ферментные системы, подавляющие в ней все биосинтети­ческие процессы.

Сывороточные ингибиторы неспецифичес­ки связываются с вирусной частицей и ней­трализуют ее, препятствуя тем самым адсорб­ции вируса на клетках-мишенях.

Напряженность противовирусного имму­нитета оценивают преимущественно в се­рологических тестах — по нарастанию титра специфических антител в парных сыворот­ках в процессе болезни. Иногда определяют концентрацию интерферона в сыворотке крови.

 

12.2.3.    Особенности противогрибкового иммунитета

Антигены грибов имеют относительно низ­кую иммуногенность: они практически не ин­дуцируют антителообразование (титры специ­фических антител остаются низкими), но сти­мулируют клеточное звено иммунитета. Между тем, основными действующими факторами противогрибкового иммунитета являются акти­вированные макрофаги, которые осуществляют антителозависимую клеточно-опосредованную цитотоксичность грибов.

При микозах наблюдается аллергизация мак­роорганизма. Кожные и глубокие микозы со­провождаются, как правило, ГЗТ. Грибковые поражения слизистых дыхательных и моче­половых путей вызывают аллергизацию по типу ГНТ (реакция I типа). Напряженность противогрибкового иммунитета оценивается по результатам кожно-аллергических проб с грибковыми аллергенами.

 

12.2.4.    Особенности иммунитета при протозойных инвазиях

Противопаразитарный иммунитет изучен слабо. Известно, что паразитарная инвазия сопровождается формированием в макроор­ганизме гуморального и клеточного имму­нитета. В крови определяются специфичес­кие антитела классов М и G, которые чаще всего не обладают протективным действием. Однако они активируют антителозависимую клеточно-опосредованную цитотоксичность с участием макрофагов, а в случае внутрик­леточного паразитирования — естественных киллеров и уоТ-лимфоцитов. Паразитарные инвазии сопровождаются аллергизацией мак­роорганизма — отмечается усиление ГЗТ на протозойные антигены.

Характер противопаразитарного иммуните­та определяется структурно-функциональны­ми особенностями паразита и его жизненного цикла при инвазии макроорганизма. Многие паразиты обладают высокой антигенной изменчивостью, что позволяет им избегать действия факторов иммунитета. Например, каждой стадии развития малярийного плаз­модия соответствуют свои специфические ан­тигены.

Напряженность противопаразитарного иммунитета оценивается в серологических тестах по титру специфических антител и в кожно-аллергических пробах с протозойным антигеном.

 

12.2.5. Особенности противоглистного иммунитета

Ведущую роль в осуществлении иммунной защиты макроорганизма от глистной инвазии играют эозинофилы, которые осуществляют антителозависимую клеточно-опосредован-ную цитотоксичность. Эти клетки «распозна­ют» паразитов, «отмеченных» специфически­ми IgE или IgA. Активированный эозинофил, дегранулируясь, выделяет ряд токсических субстанций (ферменты, белковые токсины), губительно действующих на гельминты.

Антигены гельминта, связываясь также с рецепторными комплексами тучных клеток слизистой оболочки, вызывают их деграну-ляцию. Экскретированные биологически ак­тивные соединения вызывают интенсивную перистальтику, удаляющую паразита или его останки из просвета кишки.

Эозинофилы и тучные клетки синтезируют цитокины и липидные медиаторы, потен­цирующие воспалительную реакцию в месте внедрения гельминта. Глистная инвазия со­провождается аллергизацией, в основном, по типу ГЗТ.

 

12.2.6. Трансплантационный иммунитет

Трансплантационным иммунитетом назы­вают иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Знание механизмов трансплантационного иммуните­та необходимо для решения одной из важней­ших проблем современной медицины — пе­ресадки органов и тканей. Многолетний опыт показал, что успех операции по пересадке чужеродных органов и тканей в подавляющем большинстве случаев зависит от иммунологи­ческой совместимости тканей донора и реци­пиента.

Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их составе со­держатся генетически чужеродные для орга­низма антигены. Эти антигены, получившие название трансплантационных или антигенов гистосовместимости (см. гл. 10, разд. 10.1.4.2), наиболее полно представлены на ЦПМ кле­ток.

Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости — такое возможно лишь для однояйцовых близнецов. Выраженность реакции отторжения во мно­гом зависит от степени чужеродности, объема трансплантируемого материала и состояния иммунореактивности реципиента.

При контакте с чужеродными трансплан­тационными антигенами организм реагирует факторами клеточного и гуморального зве­ньев иммунитета. Основным фактором кле­точного трансплантационного иммунитета являются Т-киллеры. Эти клетки после сен­сибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточно-опосредо-ванную цитотоксичность.

Специфические антитела, которые образу­ются на чужеродные антигены (гемагглюти-нины, гемолизины, лейкотоксины, цитоток-сины), имеют важное значение в формирова­нии трансплантационного иммунитета. Они запускают антитело-опосредованный цитолиз трансплантата (комплемент-опосредованный и антителозависимая клеточно-опосредован-ная цитотоксичность).

Возможен адоптивный перенос трансплан­тационного иммунитета с помощью активи­рованных лимфоцитов или со специфической антисывороткой от сенсибилизированной особи интактному макроорганизму.

Механизм иммунного отторжения переса­женных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетент-ных клеток (лимфоидная инфильтрация), в том числе Т-киллеров. Во второй фазе про­исходит деструкция клеток трансплантата Т-киллерами, активируются макрофагальное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспале­ние, тромбоз кровеносных сосудов, наруша­ется питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.

В процессе реакции отторжения формиру­ется клон Т- и В-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный от­вет, который протекает очень бурно и быстро заканчивается отторжением трансплантата.

С клинической точки зрения выделяют ос­трое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам.

Острое отторжение —- это «нормальная» ре­акция иммунной системы по механизму пер­вичного ответа, которая развивается в течение первых недель или месяцев после трансплан­тации в отсутствие иммуносупрессивной тера­пии. В ее основе лежит комплекс всевозмож­ных цитолитических реакций, как с участием антител, так и независимых от них.

Отсроченное отторжение имеет тот же ме­ханизм, что и острое. Возникает через не­сколько лет после операции у пациентов, получавших иммуносупрессивную терапию.

Сверхострое отторжение, или криз оттор­жения, развивается в течение первых суток после трансплантации у пациентов, сенсиби­лизированных к антигенам донора, по меха­низму вторичного иммунного ответа. Основу составляет антительная реакция: специфичес­кие антитела связываются с антигенами эн­дотелия сосудов трансплантата и поражают клетки, активируя систему комплемента по классическому пути. Параллельно иниции­руется иммунное воспаление и свертываю­щая система крови. Быстрый тромбоз сосудов трансплантата вызывает его острую ишемию и ускоряет некротизацию пересаженных тканей.

Следовательно, при пересадке органов и тканей во избежание иммунологического от­торжения трансплантата необходимо прово­дить тщательный подбор донора и реципиен­та по антигенам гистосовместимости.

 

12.2.7. Иммунитет против новообразований

В сложноорганизованном организме, на­ряду с нормальными физиологическими про­цессами, направленными на поддержание гомеостаза, с определенной частотой проис­ходят и дезинтегрирующие события, обуслов­ленные ошибками и старением сложноорга-низованной биологической системы. В частности, появляются мутантные и опухолевые клетки.

Мутантные клетки возникают в резуль­тате нелетального действия химических, физических и биологических канцероге­нов. К последним относятся разнообразные инфекционные агенты — облигатные внут­риклеточные паразиты, и, в первую очередь, вирусы. Мутантные клетки отличаются от нормальных метаболическими процессами и антигенным составом, в частности, имеют измененные антигены гистосовместимости. Поэтому они активируют гуморальное и кле­точное звенья иммунитета, осуществляющие надзорную функцию. Важную роль в этом процессе играют специфические антитела (запускают комплемент-опосредованную ре­акцию и антителозависимую клеточно-опос-редованную цитотоксичность) и Т-киллеры, осуществляющие антителонезависимую кле-точно-опосредованную цитотоксичность.

Противоопухолевый иммунитет имеет свои осо­бенности, связанные с низкой иммуногеннос-тью раковых клеток. Эти клетки практически не отличаются от нормальных, интактных морфо­логических элементов собственного организма. Специфический антигенный «репертуар» опухо­левых клеток также скуден. В число опухольассо-циированных антигенов (см. гл. 10, разд. 10.1.4.3) входит группа раково-эмбриональных антигенов, продукты онкогенов, некоторые вирусные анти­гены и гиперэкспрессируемые нормальные бел­ки. Слабому иммунологическому распознаванию опухолевых клеток способствует отсутствие вос­палительной реакции в месте онкогенеза, а также их иммуносупрессивная активность — биосинтез ряда «негативных» цитокинов ((3-ТФР и др.), г также экранирование раковых клеток противо­опухолевыми антителами.

Механизм противоопухолевого иммунитете до сих пор слабо изучен. Считается, что ос­новную роль в нем играют активированньн макрофаги; определенное значение имеку также естественные киллеры. Защитная фун кция гуморального иммунитета во MHorois спорная — специфические антитела могу экранировать антигены опухолевых клеток не вызывая их цитолиза.

Вместе с тем, в последнее время получил; распространение иммунодиагностика рака которая основана на определении в сыворот­ке крови раковоэмбриональных и опухоль-ассоциированных антигенов. Таким путем в настоящее время удается диагностировать некоторые формы рака печени, желудка, ки­шечника и др.

Между состоянием иммунной защиты и развитием новообразований существует тес­ная связь. Об этом свидетельствует повы­шенная заболеваемость злокачественными новообразованиями индивидуумов с имму-нодефицитами и престарелых в связи с по­нижением активности иммунной системы. Иммуносупрессивная химиотерапия также нередко сопровождается пролиферативными процессами. Поэтому в лечении опухо­лей нашли применение иммуномодуляторы (интерлейкины, интерфероны), а также адъюванты (мурамилдипептиды, вакцина БЦЖ и др.).

 

12.2.8. Иммунология беременности

Беременность напрямую сопряжена с фе­номеном иммунологической толерантности. В организме беременной формируется це­лый комплекс факторов, обеспечивающих ареактивность иммунной системы матери к гетероантигенам плода. Во-первых, синцити-отрофобласт плаценты «невидим» для рецеп­торов иммунокомпетентных клеток. Он не экспрессирует классические молекулы гис-тосовместимости, а только неполиморфные, трудно распознаваемые. Во-вторых, синцити-отрофобласт синтезирует иммуносупрессор-ныецитокины (ИЛ-4, -10, (5-ТФР). В-третьих, в децидуальной оболочке беременной матки располагаются CD16 CD56MHOro естественные киллеры (см. гл. 11, разд. 11.3.2), которые устраняют активированные аллоантигенами плода лимфоциты путем индукции у них апоптоза.

Механизмы иммунологической толеран­тности во время беременности чрезвычай­но активны. Известно, например, что сам­ки животных в этот период не отторгают трансплантат отца ее эмбриона. Однако после родоразрешения (или абортирования плода) толерантность быстро угасает, а надзорная функция иммунной системы быстро восста­навливается, и трансплантат отторгается.

 

12.3. Иммунный статус и его оценка

Иммунный статус — это структурное и функциональное состояние иммунной системы индивидуума, определяемое комплек­сом клинических и лабораторных иммуно­логических показателей.

Таким образом, иммунный статус (син. им­мунный профиль, иммунореактивность) характеризует анатомо-функциональное состо­яние иммунной системы, т. е. ее способность к иммунному ответу на определенный анти­ген в данный момент времени.

Наличие у человека иммунной системы ав­томатически подразумевает его способность к иммунному ответу, но сила и форма им­мунного ответа на один и тот же антиген у разных людей могут варьировать в широких пределах. Поступление антигена в организм у одного человека вызывает преимущественно антителообразование, у другого — развитие гиперчувствительности, у третьего — в основ­ном формирование иммунологической толе­рантности, и т. д. Иммунный ответ на один и тот же антиген у разных лиц может варьиро­вать не только по форме, но и по силе, т. е. по степени выраженности, например, по уровню антител, устойчивости к инфекции и др.

По иммунореактивности различаются не только отдельные индивидуумы, но у одно­го и того же человека иммунореактивность может колебаться в различные периоды его жизни. Так, иммунный статус взрослого и ребенка, особенно новорожденного или первого года жизни, когда иммунная система еще функционально незрелая, существенно различается. У детей легче индуцировать иммунологическую толерантность, у них ниже титры сывороточных антител при иммунизации. Иммунный статус молодого и пожилого человека также различен. Это частично связа­но с состоянием тимуса, который рассматри­вается как «биологические часы» иммунной системы. Возрастная инволюция тимуса ведет к медленному угасанию Т-клеточных реакций по мере старения, снижению способности к распознаванию «своего» и «чужого», поэтому в старости, в частности, выше частота злока­чественных новообразований. С возрастом нарастает также частота обнаружения ауто-антител, в связи с чем старение иногда рас­сматривается как хронически текущая ауто-агрессия.

Иммунный статус подвержен не только воз­растным, но и суточным колебаниям в зависимости от биоритма. Эти колебания обусловле­ны изменениями гормонального фона и другими причинами. Таким образом, при оценке иммунного статуса следует учитывать значительную индивидуальную вариабельность им­мунологических показателей даже в норме.

Иммунная система филогенетически отно­сится к числу молодых (наряду с нервной и эндокринной) и очень лабильных к различ­ным внешним воздействиям. Практически любое, даже самое незначительное, внешнее воздействие на организм человека ведет к изменению состояния его иммунной систе­мы. На иммунный статус оказывают влияние следующие факторы:

  • климато-географические;
  • социальные;
  • экологические (физические, химические и биологические);
  • «медицинские» (влияние лекарственных веществ, оперативные вмешательства, стресс и т. д.).

Среди климато-географических факторов на иммунный статус оказывают влияние температура, влажность, солнечная радиация, длина светового дня и др. Например, фагоцитарная реакция и кожные аллергические про­бы менее выражены у жителей северных регионов, чем у южан. Вирус Эпштейна-Барр у людей белой расы вызывает инфекционное за­болевание — мононуклеоз, у лиц негроидной расы — онкопатологию (лимфома Беркитта), а у лиц желтой расы — совсем другую онко­патологию (назофарингеальная карцинома), причем только у мужчин. Жители Африки менее подвержены заболеванию дифтерией, чем европейское население.

К социальным факторам, оказывающим влияние на иммунный статус, относятся пи­тание, жилищно-бытовые условия, профес­сиональные вредности и т. п. Важное значе­ние имеет сбалансированное и рациональное питание, поскольку с пищей в организм пос­тупают вещества, необходимые для синтеза иммуноглобулинов, для построения имму-нокомпетентных клеток и их функциони­рования. Особенно важно, чтобы в рационе присутствовали незаменимые аминокислоты и витамины, особенно А и С.

Значительное влияние на иммунный ста­тус организма оказывают жилищно-бытовые условия. Проживание в плохих жилищных условиях ведет к снижению общей физиоло­гической реактивности, соответственно им-мунореактивности, что нередко сопровож­дается повышением уровня инфекционной заболеваемости.

Большое влияние на иммунный статус ока­зывают профессиональные вредности, пос­кольку человек проводит на работе значитель­ную часть своей жизни. К производственным факторам, которые могут оказывать неблаго­приятное воздействие на организм и снижать иммунореактивность, относят ионизирую­щую радиацию, химические вещества, микробы и продукты их жизнедеятельности, тем­пературу, шум, вибрацию и т. д. Источники радиации получили в настоящее время очень широкое распространение в различных отраслях промышленности (энергетика, горнохимическая, аэрокосмическая и др.).

Неблагоприятное влияние на иммунный статус оказывают соли тяжелых металлов, ароматические, алкилирующие соединения и другие химические вещества, в том числе моющие средства, дезинфектанты, пестициды, ядохимикаты, широко применяемые в практике. Таким профессиональным вредностям подвержены работники химических, нефтехимических, металлургических производств и др.

Неблагоприятное влияние на иммунный статус организма оказывают микробы и продукты их жизнедеятельности (чаще всего белки и их комплексы) у работников биотехнологических производств, связанных с производством антибиотиков, вакцин, ферментов, гормонов, кормового белка и др.

Такие факторы, как низкая или высокая температура, шум, вибрация, недостаточная освещенность, могут снижать иммунореактивность, оказывая опосредованное действие на иммунную систему через нервную и эндокринную системы, которые находятся в тесной взаимосвязи с иммунной системой.

Глобальное действие на иммунный статус человека оказывают экологические факторы, в первую очередь, загрязнение окружающей среды радиоактивными веществами (отра­ботанным топливом из ядерных реакторов, утечка радионуклидов из реакторов при ава­риях), широкое применение пестицидов в сельском хозяйстве, выбросами химических предприятий и автотранспорта, биотехноло­гических производств.

На иммунный статус оказывают влияние различные диагностические и лечебные ме­дицинские манипуляции, лекарственная те­рапия, стресс. Необоснованное и частое при­менение рентгенографии, радиоизотопного сканирования может влиять на иммунную систему. Иммунореактивность изменяет­ся после травм и хирургических операций. Многие лекарственные препараты, в том чис­ле антибиотики, способны оказывать побоч­ное иммунодепрессивное действие, особенно при длительном приеме. Стресс приводит к нарушениям в работе Т-системы иммунитета, действуя, в первую очередь, через ЦНС.

Несмотря на вариабельность иммуноло­гических показателей в норме, иммунный статус можно определить путем постановки комплекса лабораторных тестов, включаю­щих оценку состояния факторов неспецифи­ческой резистентности, гуморального (В-система) и клеточного (Т-система) иммунитета.

Оценка иммунного статуса проводится в клинике при трансплантации органов и тканей, аутоиммунных заболеваниях, аллергиях, для выявления иммунологической недостаточности при различных инфекционных и соматических заболеваниях, для контроля эффективности лечения болезней, связанных с нарушениями иммунной системы. В зависимости от возможностей лаборатории оценка иммунного статуса чаще всего базируется на определении комплекса следующих показателей:

  • общего клинического обследования;
  • состояния факторов естественной резис­тентности;
  • гуморального иммунитета;
  • клеточного иммунитета;
  • дополнительных тестов.

При общем клиническом обследовании учиты­вают жалобы пациента, анамнез, клинические симптомы, результаты общего анализа крови (включая абсолютное число лимфоцитов), данные биохимического исследования.

Знакомство врача с пациентом начинается, как правило, с ознакомления с его паспортными данны­ми (возраст) и предъявляемыми жалобами. Уже на этом этапе врач может узнать о профессии и стаже работы пациента (наличие профессиональных вред­ностей). Из высказываемых жалоб следует обратить внимание на рецидивирующую оппортунистическую инфекцию, аллергию.

При сборе анамнеза важно выяснить, какие забо­левания перенес пациент в детстве, особенно вирус­ные и паразитарные, часто оставляющие после себя иммунодефициты. Учитывают наличие наследствен­ных заболеваний, аллергий, злокачественных ново­образований. Полезно также расспросить пациента о перенесенных травмах и операциях, о наличии хронических соматических заболеваний и тех лекарс­твенных препаратах, которые он принимает.

При осмотре больного обращают внимание на чистоту кожных покровов и слизистых, на которых можно обнаружить проявления оппортунистических инфекций, аллергии.

При пальпации и перкуссии уделяют внимание состоянию центральных (тимус) и периферических (лимфатические узлы, селезенка) органов иммунной системы, их размерам, спаянности с окружающими тканями, болезненности при пальпации.

В процессе перкуссии и аускультации фиксируют симптомы, характерные для оппортунистических ин­фекций при поражении внутренних органов.

Заканчивается клинический раздел обследования общим анализом крови, который дает представление о состоянии иммунокомпетентных клеток (абсолют­ное число лимфоцитов, фагоцитов).

При оценке состояния факторов естествен­ной резистентности определяют фагоцитоз, комплемент, интерфероновый статус, коло­низационную резистентность.

Функциональную активность фагоцитов определя­ют по их подвижности, адгезии, поглощению, дегрануляции клеток, внутриклеточному киллингу и расщеп­лению захваченных частиц, образованию активных форм кислорода. С этой целью используют такие тесты, как определение фагоцитарного индекса, НСТ-тест (нитросиний тетразолий), хемилюминисценцию и др. Состояние системы комплемента определяют в реакции гемолиза (результат учитывают по 50%-му гемолизу). Интерфероновый статус выявляют путем титрования на культуре клеток уровня интерферона в сыворотке крови. Колонизационную резистентность определяют по степени дисбиоза различных биотопов организма (чаще всего толстой кишки).

Гуморальный иммунитет определяют по уров­ню иммуноглобулинов классов G, M, A, D, Е в сыворотке крови, количеству специфических антител, катаболизму иммуноглобулинов, ги­перчувствительности немедленного типа, пока­зателю В-лимфоцитов в периферической крови, бласттрансформации В-лимфоцитов под дейс­твием В-клеточных митогенов и другим тестам.

Для определения концентрации иммуноглобулинов разных классов в сыворотке крови обычно используют радиальную иммунодиффузию по Манчини. Титр спе­цифических антител (изогемагглютинины групп крови, антитела, образующиеся после вакцинации, естествен­ные антитела) в сыворотке определяют в различных иммунологических реакциях (агглютинация, РПГА, ИФА и другие тесты). Для определения катаболизма иммуноглобулинов используют радиоизотопные метки. Число В-лимфоцитов в периферической крови уста­навливают путем определения специфических рецеп­торов на клетках с помощью моноклональных антител (кластерный анализ) или в реакции розеткообразо-вания (ЕАС-РОК эритроциты в присутствии антител и комплемента образуют розетки с В-лимфоцитами). Функциональное состояние В-лимфоцитов определя­ют в реакции бласттрансформации путем стимуляции клеток митогенами, такими как туберкулин, лаконас и др. При оптимальных условиях культивирования В-лимфоцитов с митогенами показатель трансформации в бласты может достигать 80 %. Подсчет бластов прово­дят под микроскопом, с использованием специальных гистохимических методов окраски или же с помощью радиоактивной метки — по включению в ДНК клетки тимидина, меченного тритием.

Состояние клеточного иммунитета оцени­вают по количеству Т-лимфоцитов, а также субпопуляций Т-лимфоцитов в периферичес­кой крови, бласттрансформации Т-лимфоци­тов под действием Т-клеточных митогенов, определению гормонов тимуса, уровню сек-ретируемых цитокинов, а также постанов­кой кожных проб с аллергенами, контактной сенсибилизацией динитрохлорбензолом. Для постановки кожных аллергических проб ис­пользуются антигены, к которым в норме должна быть сенсибилизация, например про­ба Манту с туберкулином. Способность организма к индукции первичного иммунного от­вета может дать контактная сенсибилизация динитрохлорбензолом.

Для определения числа Т-лимфоцитов в перифери­ческой крови используют реакцию розеткообразова-ния Е-РОК, поскольку эритроциты барана образуют с Т-лимфоцитами спонтанные розетки, а для опреде­ления числа субпопуляций Т-лимфоцитов — реакцию розеткообразования ЕА-РОК. Реакции розеткообра-зования используют в связи с тем, что на мембране Т-хелпера имеется рецептор к Fc-фрагменту иммуног­лобулина М, а на мембране Т-супрессора — рецептор к Fc-фрагменту иммуноглобулина G, поэтому Т-хел-перы образуют розетки с эритроцитами, связанными с антиэритроцитарными антителами класса IgM, a супрессоры образуют розетки с эритроцитами, связан­ными с антиэритроцитарными антителами класса IgG. Однако реакции розеткообразования для дифферен­циации Т-лимфоцитов уступили место более точному и современному методу определения популяций и субпопуляций Т-лимфоцитов — кластерному анализу, основанному на использовании моноклональных ан­тител к рецепторам лимфоцитов. После определения числа субпопуляций Т-лимфоцитов рассчитывают со­отношение хелперов и супрессоров, т. е. Т4/Т8 лимфо­цитов, которое в норме составляет примерно 2.

Бласттрансформацию Т-лимфоцитов, т. е. их фун­кциональную активность, определяют путем стиму­ляции Т-клеточными митогенами, такими как кон-канавалин А или фитогемагглютинин. Под влиянием митогенов зрелые лимфоциты трансформируются в лимфобласты, которые можно подсчитать под мик­роскопом или обнаружить по радиоактивной метке.

Для оценки состояния функции тимуса чаще всего применяют определение уровней a-тимозина и тимулина, являющихся отражением функции эпители­альных клеток стромы тимуса.

Для определения уровня секретируемых иммуноци-токинов (интерлейкины, миелопептиды и др.) исполь­зуют иммуноферментные методы, основанные на при­менении моноклональных антител к двум различным эпитопам цитокина. С этой целью можно также приме­нять реакцию торможения миграции лейкоцитов.

В качестве дополнительных тестов для оценки иммунного статуса можно использовать такие тесты, как определение бактерицидности сыво­ротки крови, титрование СЗ-, С4-компонентов комплемента, определение содержания С-реак-тивного белка в сыворотке крови, определение ревматоидных факторов и других аутоантител.

Таким образом, оценка иммунного статуса про­водится на основании постановки большого чис­ла лабораторных тестов, позволяющих оценить состояние как гуморального и клеточного звеньев иммунной системы, так и факторов неспецифи­ческой резистентности. Очевидно, что некоторые из применяемых тестов сложны в исполнении, требуют дорогостоящих иммунохимических реа­гентов, современного лабораторного оборудова­ния, а также высокой квалификации персонала, в связи с чем они выполнимы ограниченным числом лабораторий. Поэтому по рекомендации Р. В. Петрова все тесты разделены на две группы: тесты 1-го и 2-го уровня. Тесты 1-го уровня могут быть выполнены в любой клинической иммуно­логической лаборатории первичного звена здра­воохранения, они используются для первичного выявления лиц с явно выраженной иммунопато­логией. Для более точной диагностики использу­ются тесты 2-го уровня. Перечень тестов 1-го и 2-го уровня представлен в табл. 12.1.

 

12.4. Патология иммунной системы

Известны два вида расстройств иммунной системы: а) иммунная недостаточность или иммунодефициты, когда имеется дефект, т. е. отклонение, в показателях одного или не­скольких механизмов иммунного ответа; б) излишняя активация иммунных механизмов, ведущая к развитию аллергических или ауто­иммунных болезней. Несколько обособленно стоят иммунопролиферативные заболевания.

 

12.4.1. Иммунодефициты

Иммунодефициты — это нарушения нор­мального иммунного статуса, обусловлен­ные дефектом одного или нескольких меха­низмов иммунного ответа.

Различают первичные, или врожденные (генетические), и вторичные, или приобре­тенные, иммунодефициты.

Клиническая картина различных иммуно-дефицитов сходна. Иммунодефицитные со­стояния сами по себе не имеют характер­ных клинических симптомов, но обычно со­провождаются следующими проявлениями: инфекционными осложнениями; гематоло­гическими нарушениями; желудочно-ки­шечными расстройствами; аутоиммунными процессами; опухолями; аллергическими ре­акциями; врожденными пороками развития.

 

Таблица 12.1. Тесты для оценки иммунного статуса

Тесты 1-го уровняТесты 2-го уровня
1. Определение количества, морфологии Т- и В-лимфоцитов в периферической крови (абс. и %)1. Гистохимический анализ лимфоидных органов
2. Кластерный анализ или ЕАС-розеткообразова-

ние

2. Анализ поверхностных маркеров мононукле-арных клеток с использованием моноклональных антител
3. Определение сывороточных иммуноглобулинов классов М, G, A, D, Е3. Бласттрансформация В- и Т-лимфоцитов
4. Определение фагоцитарной активности лейко­цитов4. Определение цитотоксичности
5. Кожные аллергические тесты5. Определение активности ферментов, ассоцииро­ванных с иммунной недостаточностью
6. Рентгенография и рентгеноскопия лимфоидных органов, а также других внутренних органов (пре­жде всего легких) в зависимости от клинических показаний6.    Определение синтеза и еекреиии цитокииов

7.    Определение гормонов тимуса

8.    Анализ респираторного взрыва фагоцитов

9.    Определение компонентов комплемента

10.    Анализ смешанных клеточных культур

 

Исходя из сказанного, диагностику имму-нодефицитов проводят по анамнезу (частые инфекционные заболевания, опухоли, ау­тоиммунные процессы, аллергия и др.), по клиническим симптомам (оппортунистичес­кая инфекция, аллергия, опухоли, состояние лимфоузлов, пороки развития и др.), а также по тестам in vitro и in vivo, морфологическим исследованиям (гистологические исследова­ния центральных и периферических органов иммунной системы), о которых сказано выше.

 

12.4.1.1. Первичные, или врожденные, иммунодефициты

В качестве первичных иммунодефици-тов выделяют такие состояния, при которых нарушение иммунных гуморальных и кле­точных механизмов связано с генетическим блоком, т. е. генетически обусловлено неспо­собностью организма реализовывать то или иное звено иммунологической реактивности. Расстройства иммунной системы могут затра­гивать как основные специфические звенья в функционировании иммунной системы, так и факторы, определяющие неспецифическую резистентность. Возможны комбинирован­ные и селективные варианты иммунных рас­стройств. В зависимости от уровня и характера нарушений различают гуморальные, клеточ­ные и комбинированные иммунодефициты.

Врожденные иммунодефицитные синдро­мы и заболевания представляют собой до­вольно редкое явление. Причинами врожден­ных иммунодефицитов могут быть удвоение хромосом, точечные мутации, дефект фер­ментов обмена нуклеиновых кислот, генети­чески обусловленные нарушения мембран, повреждения генома в эмбриональном пе­риоде и др. Как правило, первичные имму­нодефициты проявляются на ранних этапах постнатального периода и наследуются по аутосомно-рецессивному типу. Проявляться первичные иммунодефициты могут в виде недостаточности фагоцитоза, системы комп­лемента, гуморального иммунитета (В-системы), клеточного иммунитета (Т-системы) или же в виде комбинированной иммунологичес­кой недостаточности.

Недостаточность фагоцитоза обусловле­на или уменьшением числа фагоцитов, или их функциональной неполноценностью. Периодическая нейтропения лежит в основе циклических нарушений гемопоэза в целом. В первую очередь этот процесс проявляется в уменьшении количества гранулоцитов, а так­же в изменении числа моноцитов. Несмотря на то что нейтропении не сопутствует не­достаточность гуморального или клеточного иммунитета, при ней возникает повышенная опасность инфекционных заболеваний, в осо­бенности тех, которые вызываются высокови­рулентными бактериями. Функциональные дефекты фагоцитоза могут быть обусловлены нарушениями любой стадии процесса фаго­цитоза (хемотаксиса, эндоцитоза, внутрикле­точного переваривания и др.).

Недостаточность комплемента встречается редко. Наиболее часто наблюдается дефект синтеза компонентов комплемента, обуслов­ленный наследственной недостаточностью ингибитора эстеразы С1, которая клиничес­ки проявляется ангионевротическим отеком. Низкая концентрация ингибитора эстеразы С1 допускает непрерывную частичную акти­вацию С1 с последующим потреблением С4 и С2. При ряде заболеваний, особенно при тех, которые протекают с образованием им­мунных комплексов, активация комплемента приводит к его избыточному потреблению. При этом наиболее сильно уменьшается ко­личество С1, С4, С2 и СЗ.

Недостаточность гуморального иммуните­та выражается в виде дисгаммаглобулинемии и агаммаглобулинемии. Агаммаглобулинемия обусловлена нарушением синтеза иммуног­лобулинов или их ускоренным распадом при неизмененном синтезе. При агаммаглобули­немии в крови больных отсутствуют иммуног­лобулины и у таких лиц нарушен, в первую очередь, антитоксический и антибактериаль­ный иммунитет, т. е. те виды иммунитета, в которых ведущая роль принадлежит антителам. Дисгаммаглобулинемия обусловлена селектив­ным дефицитом одного из классов или суб­классов иммуноглобулинов или их комбиниро­ванным дефицитом, при этом общий уровень сывороточных иммуноглобулинов может оста­ваться в пределах нормы или даже повышаться за счет компенсаторного усиления синтеза им­муноглобулинов других классов. Наиболее часто встречается селективный дефицит IgG при одновременно высоком уровне IgM, дефицит IgG и IgA с высоким уровнем IgM, селектив­ный дефицит IgA. Наблюдается дефицит отде­льных субклассов иммуноглобулинов и дефект легких цепей иммуноглобулинов.

Недостаточность клеточного иммунитета обусловлена нарушением функциональной активности Т-клеток. Так как Т-лимфоциты участвуют в проявлении функциональной ак­тивности В-клеток, то чаще встречается ком­бинированный иммунодефицит (повреждение Т- и В-клеточного звеньев), чем селективный Т-клеточный иммунодефицит. Тем не менее описаны изолированные Т-клеточные имму-нодефициты, такие как алимфацитоз (синдром Нозелофа), синдром ДиДжорджи (врожденная аплазия тимуса и паращитовидных желез), иммунодефицит при синдроме Дауна, имму­нодефицит при карликовом росте. У лиц с таким Т-клеточным иммунодефицитом стра­дает противовирусный, противогрибковый, противоопухолевый и трансплантационный иммунитет, т. е. те виды иммунитета, в ко­торых основная роль принадлежит реакциям со стороны Т-клеточного звена иммунной системы. Первыми признаками клеточного иммунодефицита является микоз, рециди­вирующие вирусные инфекции, осложнения после вакцинации живыми вакцинами (поли-омиелитной, БЦЖ и др.). Как правило, лица с недостаточностью клеточного иммунитета умирают в детском, реже в подростковом воз­расте от тяжелой рецидивирующей оппорту­нистической инфекции или злокачественных опухолей.

Комбинированные иммунодефициты раз­виваются при сочетании нарушений Т- и В-звеньев иммунной системы. Это наибо­лее тяжело протекающие иммунодефициты. Комбинированные формы встречаются чаще, чем селективные; как правило, они связаны с нарушением центральных органов иммунной системы. В зависимости от тяжести дефекта, в разной мере выражена предрасположен­ность к инфекционным заболеваниям. При значительных расстройствах иммунитета на­блюдают частые бактериальные и вирусные инфекции, микотические поражения, что уже в раннем возрасте приводит к летальному исходу. Иммунный дефект на уровне ство­ловой клетки обусловлен рядом нарушений: дефектом непосредственно стволовых клеток, блоком Т- и В-клеточной дифференцировки, первичным Т-клеточным иммунодефицитом, при котором снижение иммунорегуляторной функции приводит к развитию В-клеточного иммунодефицита. Дефект может быть обус­ловлен как эндогенными, так и экзогенными факторами. Функциональные нарушения мо­гут проявляться даже в том случае, если мор­фологически клетки больных не отличаются от нормы. При комбинированных иммуноде-фицитах ведущая роль принадлежит дефекту Т-клеток.

 

12.4.1.2. Вторичные, или приобретенные, иммунодефициты

Вторичные иммунодефициты в отличие от первичных развиваются у лиц с нормально функционировавшей от рождения иммунной системой. Они формируются под воздействи­ем окружающей среды на уровне фенотипа и обусловлены нарушением функции иммунной системы в результате различных заболеваний или неблагоприятных воздействий на орга­низм. При вторичных иммунодефицитах могут поражаться Т- и В-системы иммунитета, фак­торы неспецифической резистентности, воз­можны также их сочетания. Вторичные имму­нодефициты встречаются значительно чаще, чем первичные. Вторичные иммунодефициты, как правило, преходящи и поддаются иммуно-коррекции, т. е. восстановлению нормальной деятельности иммунной системы.

Вторичные иммунодефициты могут быть: после перенесенных инфекций (особенно ви­русных) и инвазий (протозойные и гельмин-тозы); при ожоговой болезни; при уремии; при опухолях; при нарушении обмена веществ и истощении; при дисбиозах; при тяжелых травмах, обширных хирургических операци­ях, особенно выполняемых под общим нар­козом; при облучении, действии химических веществ; при старении, а также медикамен­тозные, связанные с приемом лекарств.

По времени возникновения выделяют ан­тенатальные (например, ненаследственные формы синдрома ДиДжорджи), перинаталь­ные (например, нейтропения новорожденного, вызванная изосенсибилизацией матери к антигенам нейтрофилов плода) и постна-талъные вторичные иммунодефициты.

По клиническому течению выделяют ком­пенсированную, субкомпенсированную и деком-пенсированную формы вторичных иммуноде-фицитов. Компенсированная форма сопро­вождается повышенной восприимчивостью организма к инфекционным агентам, вы­зывающим оппортунистические инфекции. Субкомпенсированная форма характеризует­ся склонностью к хронизации инфекционных процессов. Декомпенсированная форма про­является в виде генерализованных инфекций, вызванных условно-патогенными микробами (УПМ) и злокачественными новообразова­ниями.

Известно разделение вторичных иммунодефицитов на:

  • физиологические:
  • новорожденности,
  • пубертатного периода,
  • беременности и лактации,
  • старения,
  • биоритмичности;
  • экологические:
  • сезонные,
  • эндогенные интоксикации,
  • радиационные,
  • СВЧ;
  • патологические:
  • постинфекционные,
  • стрессовые,
  • регуляторно-метаболические,
  • медикаментозные,
  • онкологические.

Иммунодефициты, как первичные, так и особенно вторичные, широко распростране­ны среди людей. Они являются причиной проявления многих болезней и патологичес­ких состояний, поэтому требуют профилак­тики и лечения с помощью иммунотропных препаратов. Способы иммунокоррекции из­ложены в разд. 12.5.

 

12.4.2. Аутоиммунные болезни

Аутоиммунные болезни (аутоагрессивные болезни) — болезни, в патогенезе которых аутосенсибилизация играет решающую роль.

Различают аутоиммунные реакции и ауто­иммунные заболевания, в основе которых ле­жит взаимодействие компонентов иммунной системы с собственными здоровыми клет­ками и тканями. К аутоиммунным заболева­ниям иногда относят и болезни иммунных комплексов.

Аутоиммунные реакции наблюдаются в норме у здоровых лиц, а также при патологии. В первом случае они протекают непрерывно, и их действие сводится к удалению отмираю­щих, стареющих, больных, модифицирован­ных какими-либо воздействиями клеток. Они являются начальным компонентом разверты­вания иммунного ответа на различные анти­гены. Эти реакции полезны для организма и не перерастают в болезнь.

Аутоиммунные болезни, или аутоаллергия, встречаются реже. В основе этих патологичес­ких состояний лежат аутоиммунные реакции с забарьерными перекрестно реагирующими антигенами, образование «запретных» кло­нов иммунокомпетентных клеток, реагирую­щих с собственными нормальными тканями, генетически запрограммированная слабость иммунного ответа на конкретный антиген, недостаточность Т-супрессоров, блокада ре­цепторов лимфоцитов и другие причины. Они могут быть также следствием приема лекарс­твенных препаратов.

Аутоиммунные заболевания бывают орга-носпецифическими, неорганоспецифическими и смешанными. К органоспецифическим отно­сят болезни, при которых аутоантитела спе­цифичны к одному или группе обладающих антигенными свойствами структурных эле­ментов клеток и тканей одного органа. Чаще всего это забарьерные антигены, врожден­ная толерантность к которым отсутствует, например, в случае тиреоидита Хашимото, первичной микседемы, тиреотоксикоза, пер-нициозной анемии и др.). К органонеспеци-фическим заболеваниям относятся патологи­ческие процессы, при которых аутоантитела реагируют, как указывалось, к структурным элементам клеток и тканей данного или даже другого организма, имеющего перекрестные антигенные структуры, примером которых могут служить антинуклеарные антитела при системной красной волчанке, ревматоидном артрите. Смешанные болезни включают оба вышеперечисленных механизма.

 

Таблица 12.2. Аутоиммунные заболевания

Болезни с установленной иммунопатологической природойБолезни, иммунопатологическая природа кото­рых предполагается
Гемолитическая анемия, обусловленная тепловыми ауто-антителамиПервичный билиарный цирроз печени
Гемолитическая анемия с Холодовыми гемагглютининамиПузырчатка обыкновенная и пемфигоид
Иммунологически обусловленное бесплодиеИдиопатическая аддисонова болезнь
Тиреоидит ХашимотоИдиопатический гипопаратиреоз
ИммунотромбоцитопенияПоствакцинальный энцефалит
Холодовая гемоглобинурияУзелковый периартериит
Симпатическая офтальмияДерматомиозит или полимиозит
Пернициозная анемияСклеродермия
Аутоиммунный нарушения свертывания кровиНеспецифический язвенный колит
Хронический активный гепатит

Системная красная волчанка

Ревматоидный артрит

Хронический гломерулонефрит

Гипертиреоз

 

Довольно часто можно обнаружить нор­мальные аутоантитела, не вызывающие види­мых симптомов заболевания. Они встречают­ся у совершенно здоровых людей, например, ревматоидный и антинуклеарные факторы. Довольно трудно бывает доказать, что види­мая клиническая картина заболевания пред­ставляет собой следствие аутоиммунного процесса. Обнаружение антител к аутоан-тигенам еще не позволяет сделать вывод о причинно-следственной связи заболевания с аутоиммунными реакциями. Для подтверж­дения этого необходимо: выявить иммунный ответ на аутоантиген, имеющий отношение к заболеванию; идентифицировать его; пассив­но перенести заболевание и спровоцировать болезнь соответствующим антигеном в экспе­рименте на животных. В табл. 12.2 представ­лены основные аутоиммунные заболевания человека.

Классическим примером аутоиммунного заболе­вания считается аутоиммунный тиреоидит Хашимото. Это незаметно начинающееся, диффузное увеличение щитовидной железы, которое сопровождается сни­жением ее функции. Женщин заболевание поражает чаще, чем мужчин. Гистологически обнаруживают обширную лимфоидную инфильтрацию с небольшими остатками железистой ткани. Практически во всех слу­чаях аутоиммунного тиреоидита обнаруживаются вы­сокие титры антител к антигенам щитовидной железы, прежде всего к тиреоглобулину и микросомальному антигену. Антитела определяют в РПГА или реакции иммунофлюоресценции (РИФ). Часто обнаружива­ются также антинуклеарные антитела. Патогенез ти­реоидита Хашимото до конца не выяснен. Несмотря на то, что аутоантитела к антигенам щитовидной же­лезы относятся к классу IgG и могут проходить через плаценту, у детей, родившихся от больных матерей, не обнаруживаются заметные симптомы заболевания. При тиреоидите Хашимото появляются лимфоциты, сенсибилизированные к тиреоглобулину и микросом-ному антигену, поэтому можно считать, что в основе заболевания лежат главным образом иммунные реак­ции, опосредованные клетками.

При определенных условиях антитела к поверх­ностным антигенам клетки могут не разрушать ее, а, наоборот, стимулировать. Это наблюдается при тиреотоксикозе. Сыворотка крови больных с тирео­токсикозом способна стимулировать активность щи­товидной железы. Стимулирующий фактор обладает свойствами специфических антител к щитовидной железе. Он блокирует связывание тиреостимулиру-ющего гормона с мембраной клеток щитовидной железы, а сам действует как тиреостимулирующий гормон. Стимулирующий фактор проходит через пла­центу, поэтому у детей, родившихся от матерей с тиреотоксикозом, выявляют неонатальный гиперти-реоз, который проходит через несколько недель после рождения по мере распада материнского IgG.

Иммунные реакции могут иметь значение в разру­шении клеток при остром и хроническом гепатите. Аутоиммунные реакции лежат в основе патогенеза таких заболеваний, как первичный билиарный цир­роз, хронический активный гепатит и криптогенный цирроз печени. Для хронически активного гепатита типично сочетание гипергаммаглобулинемии с ин­фильтрацией тканей печени лимфоцитами и плаз­матическими клетками. В высоком проценте случаев обнаруживаются антинуклеарные и антимитохон-дриальные антитела, а также часто сопутствующие хроническим воспалительным заболеваниям печени антитела к гладкой мускулатуре и ревматоидному фактору. Органоспецифические аутоантитела нахо­дят в сыворотке крови примерно 20 % больных, тог­да как специфически сенсибилизированные клетки печени, выявляемые с помощью флуоресцирующих антител, обнаруживаются в 80 % случаев. Очевид­но, печень функционирует как иммуносорбент для органоспецифических аутоантител. Вероятно, в ос­нове иммунопатологии лежит сенсибилизация лим­фоцитов антигенами печени. Лимфоциты больных с хроническим активным гепатитом выделяют фактор торможения миграции лейкоцитов в присутствии специфического печеночного антигена. Хроничес­кий активный гепатит представляет собой прогресси­рующее заболевание.

Системная красная волчанка — заболевание кожи и соединительной ткани внутренних органов, в основе которого лежит васкулит, обусловленный иммунны­ми комплексами. Клинические симптомы зависят от того, какая система органов поражена, и отлича­ются исключительным разнообразием. На передний план выступают патологические изменения кожи, суставов и почек. Возможно увеличение селезенки и лимфатических узлов, а также симптомы со стороны желудочно-кишечного тракта и нервной системы. В крови отмечается лейкопения. Иммунологическим критерием заболевания служат аутоантитела IgG к нативной двухцепочечной ДНК, которые находят почти во всех случаях. Можно обнаружить также антитела к другим ядерным и органоспецифическим антигенам в зависимости от локализации поражений. Часто наблюдаются иммуногемолитические ослож­нения. Концентрация компонентов комплемента СЗ и С4 в сыворотке снижена, уровень IgG повышен. Видимо, вследствие вирусной инфекции или дисре-гуляции В-клеток при красной волчанке образуются аутоантитела к ДНК, которые, реагируя с соответс­твующим антигеном ядер, образуют растворимые им­мунные комплексы, связывающие комплемент. Эти комплексы и служат причиной васкулита и нефро-патии, характерных для красной волчанки. При этом заболевании выявляется частичная недостаточность клеточного иммунитета в сочетании с избыточной активностью гуморального.

Ревматоидный артрит — это общее хроническое воспалительное заболевание с преимущественным поражением суставов. Оно протекает с повторными обострениями и ремиссиями или постоянно прогрес­сирует, приводя к тугоподвижности суставов, прежде всего кистей и стоп. При ревматоидном артрите происходит отложение активирующих комплемент иммунных комплексов в сосудах и в синовиальной оболочке суставов. Помимо суставов, в процесс вов­лекаются сердце, почки, легкие, ткани глаза и другие органы. Типичным иммунодиагностическим призна­ком болезни считается обнаружение в сыворотке рев­матоидных факторов, которые представляют собой аутоантитела преимущественно IgM к собственным IgG. Ревматоидные факторы характерны не только для ревматоидного артрита, они встречаются и при других коллагенозах и даже при отсутствии явных патологических симптомов, особенно в старости. При ревматоидном артрите выявляются и другие аутоантитела, например антиколлагеновые или анти­нуклеарные.

Хронический гломерулонефрит — обусловлен у чело­века аутоиммунными реакциями. Предполагают, что вызванный бактериальной инфекцией гломеруло­нефрит приводит к распаду тканей и к модификации почечных белков, чем и обусловлено прекращение иммунологической толерантности. Предполагает­ся общность антигенов стрептококка и базальной мембраны почки. Циркулирующие аутоантитела при гломерулонефрите удалось обнаружить только у боль­ных, у которых были удалены обе почки, так как антитела сразу после их образования связываются с почечной тканью.

Помимо хронического гломерулонефрита сущес­твуют и другие формы вовлечения почек в имму­нопатологические процессы: гломерулонефрит, вы­званный иммунными комплексами; IgA-нефропатия; комплемент-дефицитный гломерулонефрит; аллер­гическая гематурия и многие другие.

Аутоиммунная гемолитическая анемия — приобре­тенное хроническое заболевание с чередующими­ся обострениями и ремиссиями, характеризующееся снижением количества эритроцитов при нормальном состоянии костного мозга. Патология встречается с частотой 1:80 000, чаще страдают женщины. В основе заболевания лежит образование аутоантител против зрелых эритроцитов и их предшественников на раз­ных стадиях созревания.

Аутоиммунная нейтропения — характеризуется полным или почти полным отсутствием у пациента полиморфно-ядерных лейкоцитов при нормальных показателях уровня лимфоцитов и других форменных элементов крови. У больных выявляются аутоантите-ла против лейкоцитов.

Болезнь Аддисона проявляется в гормональной не­достаточности коры надпочечников с хроническим течением. Характерны гипотония, адинамия, сниже­ние уровня сахара в крови, 17-ОКС — в моче. В крови определяются аутоантитела против митохондрий и микросомаллогенных клеток железы, которые и обус­лавливают атрофию и деструкцию надпочечников.

Болезнь Бехчета — хронический патологический процесс с периодическими обострениями. Для за­болевания характерна триада симптомов: поражение слизистой оболочки рта (стоматит), конъюнктивы глаз, сосудистой оболочки глаз (увеит), а также по­ловых органов. У больных образуются афты, язвы с рубцеванием. В крови обнаружены аутоантитела к эпителию слизистой оболочки ротовой полости.

Болезнь Крона (гранулематозный колит) — рецидиви­рующее заболевание, поражающее в основном толстую кишку; одновременно патологический процесс может локализоваться и в других отделах ЖКТ. Характерный признак болезни — сегментарное повреждение всей толщи стенки толстой кишки лимфоцитарными гра­нулемами с последующим образованием глубоких про­никающих щелевидных язв. Заболевание встречается с частотой 1:4000, чаще страдают молодые женщины.

Болезнь Шегрена — характеризуется лимфоидной инфильтрацией слюнных желез с последующей их атрофией. Основной симптом — сухость слизистой оболочки ротовой полости и конъюнктивы глаза. Слюнные железы поражаются вследствие аутосенсибилизации и появления иммунных комплексов.

Болезнь Уиппла (кишечная липодистрофия) — хро­ническое заболевание с поражением тонкой кишки с развитием диспепсии, полиартрита, реже — с пора­жением клапанов сердца, полисерозитом, лимфоаде-нопатией, диффузной пигментацией кожи.

Неспецифический язвенный колит — заболевание, раз­вивающееся по типу диффузного хронического воспа­ления слизистой оболочки кишечника с образованием обширных неглубоких язв. В крови определяются ауто­антитела против энтероцитов толстой кишки.

Пернициозная анемия — заболевание, характеризую­щееся нарушением эритропоэза, развитием гемоблас-тического типа кроветворения, эритрофагии, анемии. Пернициозной анемии часто предшествует атрофический гастрит. В основе патологического процесса лежит образование аутоантител против париетальных клеток желудка и внутреннего фактора Кастла.

Целиакия (глютеновая болезнь, глютеновая энте-ропатия) — хроническое заболевание тонкой кишки, в основе которого лежит дефицит вырабатываемых слизистой пептидаз, расщепляющих растительный белок — глютенклейцевину, содержащуюся в злаках. Чаще болеют женщины. Клинически заболевание сопровождается энтеритом, особенно при употребле­нии в пищу продуктов, богатых клейковиной.

Следовательно, уже известно множество болезней, в основе патогенеза которых ле­жат аутоиммунные процессы, обусловленные рядом причин, в том числе агрессивностью иммунной системы, направленной на обра­зование аутоантител к собственным антиген­ным структурам клеток и тканей. Эти болезни трудно поддаются лечению. Важное место среди лечебных средств занимают иммунот-ропные препараты, направленные на сниже­ние агрессивности иммунной системы.

12.4.3. Аллергические болезни

На первичный контакт с антигеном орга­низм отвечает образованием антител и сен­сибилизированных лимфоцитов. При пов­торном контакте антиген вступает в реак­цию с антителами и сенсибилизированными лимфоцитами. Эти реакции направлены на устранение антигена, но при определенных условиях могут привести к патологическим последствиям. Заболевание возникает лишь при значительном отклонении иммунореак-тивности от нормы. При повышенном уровне индивидуальной реактивности в отношении данных антигенов речь идет об аллергии (см. гл. 11, разд. 11.4).

Разделение аллергических реакций на че­тыре типа весьма важно с клинической точки зрения. Следует подчеркнуть, что различные типы аллергических реакций редко встреча­ются в чистом виде; как правило, они соче­таются или же переходят одна в другую в ходе заболевания.

 

Таблица 12.3. Примеры веществ, способных вызвать анафилаксию

Ксе ноге иные сывороткиАнтилимфоцитарная сыворотка

Противостолбнячная сыворотка

Противодифтерийная сыворотка

Другие белковые препараты

Пыльца растений 
Природные ядыПчелиный яд

Яд ос

Змеиный яд

 Антибиотики (пенициллин)
Лекарственные препаратыСалицилаты

Белковые гормоны

 Вакцины (коревая, гриппозная и др.)

 

12.4.3.1.     Реакции I типа (анафилактические)

Анафилаксия представляет собой иммун­ную реакцию, для которой необходимы спе­цифические цитофильные антитела и клетки. Анафилаксия может проявляться в виде мес­тной (на коже и слизистых) или системной (анафилактический шок) реакции. Местные анафилактические реакции в зависимости от локализации могут выражаться уртикарной Сыпью, вазомоторным насморком, бронхи­альной астмой или кишечными расстройства­ми. Так как тучные клетки и базофилы встре­чаются в организме повсеместно, поэтому анафилактическая реакция может протекать в любом органе, однако для каждого вида животных характерны определенные органы, поражаемые чаще, чем другие (шок-органы). У человека чаще поражаются артериолы и бронхи. К анафилактическим реакциям че­ловека, которые вызываются IgE, относятся приступы бронхиальной астмы, сенная ли­хорадка, крапивница, реакции на укусы ос и пчел (табл. 12.3).

 

12.4.3.2.     Реакции II типа (гуморальные цитотоксические)

Аллергические реакции II типа опосредова­ны антителами к поверхностным антигенам клетки или к вторично связанным с кле­точной поверхностью антигенам. Решающую роль в этом случае играют антитела, способ­ные активировать комплемент IgGl—3, IgM. Помимо комплементзависимой цитотоксич-ности сюда можно также отнести антителоза-висимую клеточно-опосредованную цитоток-сичность, не нуждающуюся в комплементе.

Антитела, принимающие участие в цито-токсических реакциях, специфичны к детер­минантам клеточной мембраны. Это можно наблюдать при некоторых формах лекарс­твенной аллергии, когда молекулы лекарс­твенного препарата адсорбируются на по­верхности клеток крови. Следствием этого могут быть гемолитическая анемия, лейкоци-топения, тромбоцитопения, агранулоцитоз. Наибольшее значение для клиники имеют те гуморальные цитотоксические реакции, которые затрагивают эритроциты. Реакция, направленная против эритроцитов другого индивида, называется изоиммунной, а реак­ция против собственных эритроцитов — ау­тоиммунной. У каждого человека в сыворотке имеется высокий титр антител против тех антигенов системы АВО, которые отсутствуют на собственных эритроцитах. При перели­вании несовместимой крови эти изогемаг-глютинины вызывают цитотоксическую им­мунную реакцию, которая сопровождается гемолизом крови. При повторных беремен­ностях резус-положительным плодом у резус-отрицательных женщин в крови образуются антирезус-IgG, способные проходить через плаценту и, оказывая цитотоксическое дейс­твие на эритроциты плода, разрушать их. Это ведет к развитию гемолитической болезни новорожденных. При аутоиммунных гемоли­тических анемиях образуются аутоантитела к антигенам собственных эритроцитов, кото­рые их разрушают при участии комплемен­та. Некоторые низкомолекулярные вещества, например определенные лекарственные пре­параты, обладая аффинностью к мембране эритроцитов, способны стать иммуногенны-ми и вызвать образование антител с разви­тием гемолитической анемии. Так действуют хинин, фенацетин, салицилаты, стрептоми­цин, пенициллин, цефалоспорины, сульфа­ниламиды и др. Аналогичным образом объек­том цитотоксического действия могут стать и другие форменные элементы крови (аграну-лоцитоз, тромбоцитопения).

 

12.4.3.3. Реакции III типа (иммунокомплексные)

Аллергические реакции III типа опосредо­ваны иммунными комплексами, которые об­разуются при преципитации в небольшом из­бытке антигена. В зависимости от количества и иммуногенности антигена иногда проис­ходит отложение образовавшихся иммунных комплексов в тканях. Биологические свойства таких комплексов обусловлены прежде всего соотношением АГ-АТ. Иммунные агрегаты, образовавшиеся при значительном избытке антигена, имеют малые и средние размеры и могут обладать токсическим действием. В образовании токсических иммунных комп­лексов могут принимать участие IgM, IgGl-3, связывающие комплемент. Благодаря актива­ции комплемента, в местах отложения иммун­ных комплексов происходит высвобождение биологически активных медиаторов-анафи-лотоксинов (СЗа, СЗЬ, С5а), которые, повы­шая проницаемость сосудов и привлекая по­лиморфно-ядерные лейкоциты, способству­ют развитию воспаления. Фагоцитированные токсические иммунные комплексы повреж­дают и разрушают гранулоциты, из которых выделяются протеолитические ферменты, в свою очередь разрушающие ткани организма. Поэтому симптомы, вызываемые токсически­ми иммунными комплексами, обусловлены также повреждающим действием токсических факторов эндогенной природы, высвобожда­ющихся при воспалении в результате актива­ции комплемента и распада нейтрофилов.

Иммунные комплексы могут образовываться либо в кровотоке, когда антиген и антитела од­новременно находятся в плазме крови, либо в тканях, когда антиген введен в ткань, а антитела находятся в крови и происходит их встречная взаимная диффузия. В первом случае развива­ется обусловленный иммунными комплексами васкулит, во втором — феномен Артюса. При ал­лергическом васкулите образование иммунных комплексов происходит при небольшом избытке антигена непосредственно в просвете сосуда. Местом их нахождения может стать любой кро­веносный сосуд, и тогда в результате актива­ции комплемента и лейкотаксиса происходит повреждение ткани и даже запустение сосуда. Чаще поражаются сосуды нижних конечностей и капилляры почечных клубочков. Типичный пример аллергического васкулита — гломерулонефрит. Решающее значение при данном виде патологии имеет сам факт персистенции антиге­на и его концентрация. Так, некоторые микробы, особенно стрептококки группы А, и продукты их распада способствуют развитию хронического гломерулонефрита. Как особый случай васкули­та, обусловленного иммунными комплексами, можно рассматривать сывороточную болезнь, которая развивается через 8-10 дней после од­нократного введения чужеродной сыворотки и сопровождается повышением температуры, увеличением селезенки и лимфатических узлов, лейкоцитозом и снижением активности ком­племента. Симптомы сывороточной болезни возникают с появлением в кровотоке антител и сохраняются до тех пор, пока в кровотоке на­ходится свободный антиген. После иммунной элиминации антигена симптомы исчезают. При феномене Артюса иммунная реакция первично направлена только на чужеродный антиген, од­нако высвобождение лизосомальных фермен­тов в местах отложения иммунных комплексов приводит к вторичному повреждению тканей. Классическая реакция Артюса у человека наблю­дается прежде всего при воздействии некоторых ингаляционных аллергенов, особенно при регу­лярных повторных воздействиях. К подобным заболеваниям относится аллергический альвеолит, при котором в сыворотке больных часто обнаруживаются преципитирующие антитела к промышленным аллергенам («лёгкие фермера», «лёгкие птичника»).

 

12.4.3.4. Реакции IV типа (опосредованные Т-лимфоцитами)

Существует ряд антигенов, которые сти­мулируют преимущественно Т-лимфоциты и вызывают благодаря этому формирование главным образом клеточного иммунитета. К ним относятся антигены внутриклеточных паразитов (бактерий, грибов, вирусов, про­стейших), чужеродных тканей (трансплан­татов), природные и синтетические гаптены (лекарственные препараты, пищевые краси­тели и др.). Таким образом, ГЗТ может вызы­ваться практически всеми известными анти­генами, но наиболее ярко она проявляется на полисахариды и низкомолекулярные пепти­ды, т. е. низкоиммуногенные антигены. При этом реакцию вызывают малые дозы аллерге­нов и, особенно при внутрикожном введении, что вызывает сенсибилизацию Т-хелперов. Сенсибилизированные лимфоциты выделяют медиаторы, в том числе интерлейкин-2, ко­торые активируют макрофаги и вовлекают их в процесс разрушения антигена, вызвавшего сенсибилизацию. Цитотоксичность проявля­ют и сами Т-лимфоциты. О роли лимфоцитов в возникновении ГЗТ свидетельствует воз­можность адаптивной передачи аллергии от сенсибилизированного организма несенси-билизированному с помощью введения лим­фоцитов, а также подавления этой реакции антилимфоцитарной сывороткой.

Морфологическая картина при ГЗТ носит воспалительный характер, обусловленный реакцией лимфоцитов и макрофагов на об­разующийся комплекс антигена с сенсиби­лизированными лимфоцитами и проявляется через 24-48 ч. Ее типичным примером слу­жит туберкулиновая реакция. Внутрикожное введение туберкулина сенсибилизированно­му индивиду вызывает покраснение и отек на месте инъекции, достигающие максимума через 24-48 ч с момента введения аллергена. Образуется плотная гиперемированная папу­ла с некрозом в центре. Некротизированная ткань иногда отторгается, оставляя после себя изъязвление, которое медленно зажива­ет. Гистологически обнаруживают скопление макрофагов и лимфоцитов.

Введение лекарственных препаратов или даже просто контакт с некоторыми низкомо­лекулярными веществами может вызвать ГЗТ. Низкомолекулярные соединения обладают свойствами гаптенов и, присоединившись к носителям, которыми являются собственные белки организма, индуцируют развитие ГЗТ. Типичный пример опосредованной клетка­ми гиперчувствительности кожи представляет контактная экзема. При встрече сенсибили­зированного индивида с гаптеном происходит локальная активация Т-лимфоцитов и макро­фагов. Происходящее при этом высвобожде­ние лимфокинов запускает патологический процесс, который клинически проявляется экземой. Наиболее часто контактную аллер­гию вызывают синтетические моющие средс­тва, соединения хрома, никеля, ртути, пара-фенилендиамин, динитрохлорбензол, многие консерванты и медикаменты.

 

12.4.4. Иммунопролиферативные заболевания

Группа этих заболеваний объединяет па­тологические иммунопролиферативные про­цессы, которые исходят из клеток иммун­ной системы. Патология включает широкий спектр состояний — от доброкачественных инфекций (например, инфекционный мо-нонуклеоз) до нарушений злокачественного характера. Среди иммунопролиферативных заболеваний можно выделить ситуацию с вы­раженным клеточным полиморфизмом или с преобладанием однотипных клеточных форм. Классификация иммунопролиферативных заболеваний представлена в табл. 12.4.

Лимфогранулематоз (болезнь Ходжкина) — пред­ставляет собой заболевание лимфоидной ткани. Для него характерно увеличение лимфатических узлов, селезенки и печени, а также сопутствующие инфек­ции. Диагноз подтверждается путем биопсии пери­ферических лимфатических узлов – характерной находкой так называемых клеток Ходжкина и много­ядерных гигантских клеток Штернберга. Этиология заболевания неясна. Наблюдается злокачественное перерождение Т-лимфоцитов с последующей неоп­ластической трансформацией ретикулярных клеток.

 

Таблица 12.4. Классификация иммунопролиферативных болезней

Тип клетокЗаболевание
В-клеткиХронический лимфолейкоз
Опухоли из клеток зародышевых центров (лимфосаркома, лимфобластома)
Лимфоплазмацитоидные лимфомы
В-иммунобластная саркома (лимфома Беркитта)
Т-клеткиТ-лимфобластная саркома
Острый Т-клеточный лейкоз
Редкие формы хронических лимфолейкозов
«0»-клеткиЛейкозы с незрелыми лимфоидными клетками

Инфекционный мононуклеоз — доброкачественное иммунопролиферативное заболевание, вызываемое вирусом Эпштейна-Барр, которое характеризуется увеличением шейных лимфоузлов, лейкоцитозом, причем более половины лейкоцитов периферической крови — моноциты.

Хронический лимфолейкоз характеризуется лейкоци­тозом, увеличением лимфоузлов, изменениями кожи, рецидивирующими инфекциями. Помимо нормаль­ных Т- и В-лимфоцитов наблюдаются пролифериру-юшие в той или иной степени атипичные клетки, ко­торые по их поверхностным маркерам можно отнести к В-лимфоцитам. Это иммуноглобулин-продуцирую-щие, но не иммуноглобулин-секретирующие клетки.

К плазмоцитопролиферативным заболевани­ям относят плазмоцитому (множественную миело-му), макроглобулинемию и болезнь тяжелых цепей. Плазмоцитома характеризуется моноклональной пролиферацией плазматических клеток, парапротеинемией, инфильтрацией костной ткани плазматичес­кими клетками.

Для болезни тяжелых цепей характерен усиленный синтез фрагментов Н-цепей иммуноглобулинов.

12.5. Иммунокоррекция

При иммунодефицитах для профилактики возникающих инфекционных болезней ис­пользуют химиотерапию и химиопрофилак-тику. Детям с тяжелыми комбинированными иммунодефицитами назначают антибиотики узкого спектра действия. Такой курс химио­терапии может продолжаться годами.

С целью восстановления функциональной полноценности иммунной системы приме­няют заместительную терапию — введение препаратов иммуноглобулинов, пересадка эмбрионального тимуса и костного мозга.

Для активации или супрессии (подавления) иммунной системы применяют специфичес­кие и неспецифические препараты и методы воздействия, с помощью которых проводят иммунокоррекцию.

Иммуномодуляция или иммунокоррекция является разделом клинической иммунологии, изучающим способы и методы профилактики и лечения болезней или состояний (иммунодефицитов), связанных с нарушением функции иммунной системы.

Препараты, влияющие на иммунный статус и применяемые для иммунокоррекции назы­вают иммуномодуляторами. К настоящему времени известны сотни иммуномодуляторов применяемых в медицине. Все иммуномоду-ляторы можно подразделить по вектору, т. е. по направлению и характеру влияния на им­мунитет (табл. 12.5).

Стимулирующее и супрессорное действие, как активное, так и пассивное, как специфи­ческое, так и неспецифическое, могут оказы­вать иммуномодуляторы различной природы и происхождения, далеко отстоящие друг от друга по химической природе и источнику по­лучения. Выделяют эндогенные и экзогенные иммуномодуляторы. К эндогенным относятся вещества, синтезируемые самим организмом и участвующие тем или иным способом в им­мунном процессе, а к экзогенным — чужерод­ные для организма вещества, поступающие извне. Классификация иммуномодуляторов по природе и происхождению представлена в табл. 12.6. К эндогенным иммуномодуляторам относятся все иммуноцитокины, иммуногло­булины, другие иммунореагенты, участвую­щие в специфическом и неспецифическом звеньях иммунитета. Эндогенные иммуно-модуляторы являются гомологичными, гене­тически нечужеродными для организма, так как они относятся к естественным и необхо­димым регуляторам процессов иммуногенеза в норме. К экзогенным иммуномодуляторам относятся вещества органической и неорга­нической природы, а также сложные вещества неустановленного состава, способные влиять на иммунную систему. Все экзогенные иммуномодуляторы чужеродны для организма, так как они не встречаются в организме, не син­тезируются им и могут попадать в него только извне спонтанно или «преднамеренно» в виде профилактических и лечебных препаратов.

Таблица 12.5. Классификация иммуномодуляторов по вектору и характеру действия на иммунную систему

Активирующее действиеСупрессорное действие
специфическоенеспецифическоеспецифическоенеспецифическое
активноепассивноеактивноепассивноеактивноепассивноеактивноепассивное
Антигены,

иммуно-

цитокины

и другие

иммуно-

реагенты

Антитвпя

 

Адъюванты, митогены, экзогенные

иммуномодуляторы, адаптогены

Гормоны, ферменты, защитные сывороточные белки иммунной системы, некоторые микронутриентыТолерогены, иммунотоксиныАнтилимфоцитарная сыворотка и антилимфоцитарный иммуноглобулин, монокдональные антитела к рецепторам лимфоцитовИммунодепрессанты органической и неорганической природы, радиоактивное облучение, плазмаферезГормоны, некоторые микронутриенты

 

Таблица 12.6. Классификация иммуномодуляторов по природе и происхождению

ЭндогенныеЭкзогенные
(естественные иммунобиореагенты организма)(чужеродные, несвойственные организму)
1. Иммуноцитокины: интерлейкины, интерфероны, пептиды тимуса, костного мозга, фактор некроза опухоли, кейлоны1. Вещества органической природы: белки, липиды, нуклеиновые кислоты, нуклеопротеины, липополисахариды, полисахариды и другие вещества животного, растительного, микробного происхождения и синтетически полученные
2. Иммуноглобулины (поли- и моноклональные, аутоантитела, абзимы, аутоантигены)2. Вещества неорганической природы: минеральные коллоиды (гидроксид алюминия, фосфат алюминия и др.), растворимые соединения (хлористый кальций, алюминиевые квасцы), кристаллоиды (активированный уголь, кварцевый порошок), микронутриенты
3. Иммунореагенты, участвующий в иммунном процессе (комплемент, ферменты, защитные белки сыворотки крови, гормоны)3. Сложные вещества: адъювант Фрейнда, бактериальные клетки, молоко, сочетание липидов с минеральными сорбентами и др.

 

Независимо от природы и источника проис­хождения эндогенные и экзогенные иммуно-модуляторы оказывают как стимулирующее, так и супрессорное, как специфическое, так и неспецифическое влияние на иммунную сис­тему. Некоторые из эндогенных иммуномоду­ляторов получены с помощью генной инжене­рии и уже применяются в клинике (см. гл. 6). Уровень разработки эндогенных иммуномоду­ляторов в России представлен в табл. 12.7.

Таблица 12.7. Уровень разработки эндогенных иммуномодуляторов в России

 

 

 

ИммуномодуляторНИРДоклиникаКлиникаПроизводство

+

Интерфероныа+++
В р Ш++  
У++ 
 Ш ч* 1+++вввн
Интерлейкины2++  
 6+   
Лимфокин (ИЛ-1, -2, -6)++  
ФНО++В +/~ В 
Пептиды тимуса++В. +/– В 
Миелопептиды++В’ +/- В 
КСФ, кейлоны и др.+   
Слитные белки:

дифанатоксин+ ИЛ-2 тимозин (а 1+2)+ФНО

+ ++ + вв
Белки-антагонисты рецепторов ИЛ-2, ИФН-а2+   

 

Иммуномодуляторы различаются по меха­низму действия на иммунную систему. Одни из них влияют преимущественно на В-систе-му (например, пептиды костного мозга), дру­гие — на Т-систему (например, пептиды тиму­са), третьи — на систему А-клеток (например, ЛПС), а четвертые оказывают комбинирован­ное действие на Т-, В- и А-систему (например, мурамилдипептид и его производные). Нет им-муномодуляторов, избирательно действующих только на какую-либо одну систему иммуни­тета. Однако каждому иммуномодулятору, по­мимо общего комбинированного влияния на иммунную систему’, присуще преимуществен­ное действие на определенное звено иммунно­го процесса. Одни из них действуют главным образом на стволовую клетку костного мозга, другие — на дифференцировку иммунокомпе-тентных клеток, третьи — на синтез иммуног­лобулинов, четвертые — на фагоцитоз или ин-терферонообразование, и т. д. Классификация иммуномодуляторов по механизму действия представлена в табл. 12.8. Конечно, такая клас­сификация должна быть сопряжена с класси­фикацией первичных и вторичных иммунодефицитов, базирующейся на механизмах и причинах, которые лежат в основе нарушений функций иммунной системы и на которые, в случае иммунокоррекции, следует воздейство­вать с помощью иммуномодуляторов.

Цель оптимальной иммунокоррекции — на­правленное воздействие на способность орга­низма к иммунному ответу, т. е. на активацию или подавление активности иммунной систе­мы в зависимости от показаний. Например, для создания иммунитета к возбудителям инфекционных болезней иммунную систему активируют с помощью вакцин, а пассивный иммунитет создают введением сывороток или иммуноглобулинов. При аллергических состояниях и некоторых иммунопатологи­ческих процессах необходимо подавить им­мунную систему, поэтому применяют иммунодепрессанты. Они же применяются при трансплантации органов и тканей. Особое значение приобретает антигенспецифическая стимуляция или супрессия. Поскольку в кли­нике существуют определенные ограничения, основным подходом к лечению остается не­специфическая коррекция.

 

Таблица 12.8. Классификация иммуномодуляторов по механизму действия с учетом механизма развития первичных и вторичных иммунодефицитов

  1. Действие (активирующее или супрессорное) на гуморальное звено специфического иммунитета
  • На стволовую клетку костного мозга
  • На дифференцировку и созревание В-лимфоцитов
  • На синтез иммуноглобулинов различных классов
  • На рецепторный аппарат В-лимфоцитов
  • На аффинитет и авидность иммуноглобулинов
  • На синтез иммуноцитокинов направленного действия
  1. Действие (активирующее или супрессорное) на клеточное звено специфического иммунитета
  • На стволовую клетку костного мозга
  • На дифференцировку и созревание Т-лимфоцитов
  • На активность субпопуляций специализированных Т-лимфоцитов
  • На взаимодействие Т-лимфоцитов с клетками-мишенями
  • На кооперативные взаимоотношения Т-лимфоцитов с В-лимфоцитами и А-клетками
  • На синтез иммуноцитокинов направленного действия
  1. Действие на неспецифическое звено иммунитета
  • На активность фагоцитоза моноцитов
  • На систему интерферонагенеза
  • На синтез комплемента
  • На активность ферментов, в первую очередь лизоцима
  • На синтез неспецифических защитных белков сыворотки крови
  • На активность гормональной системы
  1. Комбинированное действие на гуморальное, клеточное и неспецифическое звенья иммунного процесса
  2. Действие, координирующее работу иммунной системы
  • На центральную и периферическую нервную системы, а также на эндокринную систему, играющую роль в регуляции деятельности иммунной системы
  • На центральные органы иммунной системы (тимус, костный мозг)
  • На отдельные звенья иммунного процесса и кооперацию иммунокомпетентных клеток
  • На обменные процессы в иммунокомпетентных клетках и синтез иммуноцитокинов

Возможная модуляция при достижении иммуносупрессии или иммуностимуляции в значительной мере зависит от особенностей иммунного ответа. Ввиду сложности межкле­точных взаимоотношений иммуносупрессия, оказывая влияние и на чувствительные клет-ки-супрессоры, может дать иммуностимули­рующий эффект. С другой стороны, некото­рые активные факторы тимуса путем актива­ции клеток-супрессоров вызывают состояние, которое можно отнести к иммуносупрессии.

Общим принципом иммунокоррекции яв­ляется ее проведение на фоне полноценно­го питания, приема витаминных препаратов, микро- и макроэлементов. Некоторые из них обладают иммуномодулирующим действием, что необходимо соотносить с характером им­мунных нарушений у пациентов. Важным компонентом иммунокоррекции является ис­пользование энтеросорбентов, выводящих из организма соли тяжелых металлов, АГ, ра­дионуклиды, нитраты и нитриты. Принципы иммунокоррекции следующие:

  1. Иммунотерапию применять только пос­ле определения состояния иммунной системы, т. е. иммунного статуса, и выявления недоста­точного функционирования звена иммунитета.
  2. Иммунотерапию обязательно назначать при нарушениях иммунного статуса, сопро­вождающихся клиническими симптомами.
  3. В процессе иммунотерапии необходимо сле­дить за состоянием иммунного статуса в динамике.
  4. Использовать иммуномодуляторы для профилактики тех воздействий, которые мо­гут вызвать иммунодефициты (экологичес­кие, социальные и другие факторы).

ГЛАВА 13. ИММУНОДИАГНОСТИЧЕСКИЕ РЕАКЦИИ И ИХ ПРИМЕНЕНИЕ

13.1. Реакции антиген—антитело

Особенности взаимодействия антитела с ан­тигеном являются основой диагностических реакций в лабораториях. Реакция in vitro между антигеном и антителом состоит из специ­фической и неспецифической фазы. В специ­фическую фазу происходит быстрое специфи­ческое связывание активного центра антитела с детерминантой антигена. Затем наступает неспецифическая фаза — более медленная, ко­торая проявляется видимыми физическими явлениями, например образованием хлопьев (феномен агглютинации) или преципитата в виде помутнения. Эта фаза требует наличия определенных условий (электролитов, оптимального рН среды).

Связывание детерминанты антигена (эпитопа) с активным центром /йб-фрагмента анти­тел обусловлено ван-дер-ваальсовыми силами, водородными связями и гидрофобным взаимо­действием. Прочность и количество связавше­гося антигена антителами зависят от аффин­ности, авидности антител и их валентности.

Иммунные реакции используют при диа­гностических и иммунологических исследо­ваниях у больных и здоровых людей. С этой целью применяют серологические методы (от лат. serum — сыворотка и logos — учение), т. е. методы изучения антител и антигенов с помо­щью реакций антиген—антитело, определяе­мых в сыворотке крови и других жидкостях, а также тканях организма.

Обнаружение в сыворотке крови боль­ного антител против антигенов возбудите­ля позволяет поставить диагноз болезни. Серологические исследования применяют также для идентификации антигенов микро­бов, различных биологически активных ве­ществ, групп крови, тканевых и опухолевых антигенов, иммунных комплексов, рецепто­ров клеток и др.

При выделении микроба от больного про­водят идентификацию возбудителя путем изучения его антигенных свойств с помощью иммунных диагностических сывороток, т. е. сывороток крови гипериммунизированных животных, содержащих специфические ан­титела. Это так называемая серологическая идентификация микроорганизмов.

В микробиологии и иммунологии широко применяются реакции агглютинации, преци­питации, нейтрализации, реакции с участи­ем комплемента, с использованием меченых антител и антигенов (радиоиммунологичес­кий, иммуноферментный, иммунофлюорес-центный методы). Перечисленные реакции различаются по регистрируемому эффекту и технике постановки, однако, все они осно­ваны на реакции взаимодействия антигена с антителом и применяются для выявления как антител, так и антигенов. Реакции иммуните­та характеризуются высокой чувствительнос­тью и специфичностью.

Ниже приводятся принципы и схемы ос­новных иммунодиагностических реакций. Детальная техника постановки реакций дана в практических руководствах по иммуноди­агностике.

13.2. Реакции агглютинации

Реакция агглютинации РА (от лат. agglutinatio — склеивание) — простая по постановке реакция, при которой происходит связыва­ние антителами корпускулярных антигенов (бактерий, эритроцитов или других клеток, нерастворимых частиц с адсорбированными на них антигенами, а также макромолекуляр-ных агрегатов). Она протекает при наличии электролитов, например при добавлении изо­тонического раствора натрия хлорида.

Применяются различные варианты реакции агглютинации: развернутая, ориентировоч­ная, непрямая и др. Реакция агглютинации проявляется образованием хлопьев или осад­ка (клетки, «склеенные» антителами, имеющими два или более антигенсвязывающих центра — рис. 13.1). РА используют для:

1) определения антител в сыворотке крови больных, например, при бруцеллезе (реакции Райта, Хеддельсона), брюшном тифе и паратифах (реакция Видаля) и других инфекционных болезнях;

  • определения возбудителя, выделенного от больного;
  • определения групп крови с использова­нием моноклональных антител против алло-антигенов эритроцитов.

Для определения у больного антител ставят развернутую реакцию агглютинации: к разве­дениям сыворотки крови больного добавля­ют диагностикум (взвесь убитых микробов) и через несколько часов инкубации при 37 °С отмечают наибольшее разведение сыворотки (титр сыворотки), при котором произошла агглютинация, т. е. образовался осадок.

  1. Характер и скорость агглютинации зави­сят от вида антигена и антител. Примером являются особенности взаимодействия диа-гностикумов (О- и Я-антигенов) со специ­фическими антителами. Реакция агглютина­ции с О-диагностикумом (бактерии, убитые нагреванием, сохранившие термостабильный О-антиген) происходит в виде мелкозернис­той агглютинации. Реакция агглютинации с Н-диагностикумом (бактерии, убитые фор­малином, сохранившие термолабильный жгу­тиковый Н-антиген) — крупнохлопчатая и протекает быстрее.

Если необходимо определить возбудитель, выделенный от больного, ставят ориентиро­вочную реакцию агглютинации, применяя диа­гностические антитела (агглютинирующую сыворотку), т. е. проводят серотипирование возбудителя. Ориентировочную реакцию проводят на предметном стекле. К капле диа­гностической агглютинирующей сыворотки в разведении 1:10 или 1:20 добавляют чистую культуру возбудителя, выделенного от больно­го. Рядом ставят контроль: вместо сыворотки наносят каплю раствора натрия хлорида. При появлении в капле с сывороткой и микроба­ми хлопьевидного осадка ставят развернутую реакцию агглютинации в пробирках с увели­чивающимися разведениями агглютинирую­щей сыворотки, к которым добавляют по 2—3 капли взвеси возбудителя. Агглютинацию учитывают по количеству осадка и степени просветления жидкости. Реакцию считают положительной, если агглютинация отмеча­ется в разведении, близком к титру диагнос­тической сыворотки. Одновременно учитыва­ют контроли: сыворотка, разведенная изото­ническим раствором натрия хлорида, должна быть прозрачной, взвесь микробов в том же растворе — равномерно мутной, без осадка.

Разные родственные бактерии могут агглю­тинироваться одной и той же диагностической агглютинирующей сывороткой, что затрудня­ет их идентификацию. Поэтому пользуются адсорбированными агглютинирующими сыво­ротками, из которых удалены перекрестно

реагирующие антитела путем адсорбции их родственными бактериями. В таких сыво­ротках сохраняются антитела, специфичные только к данной бактерии. Получение таким способом монорецепторных диагностических агглютинирующих сывороток было предло­жено А. Кастелляни (1902).

Реакция непрямой (пассивной) гемагглюти-нации (РНГА, РПГА) основана на использо­вании эритроцитов с адсорбированными на их поверхности антигенами или антителами, взаимодействие которых с соответствующими антителами или антигенами сыворотки крови больных вызывает склеивание и выпадение эритроцитов на дно пробирки или ячейки в виде фестончатого осадка (рис. 13.2). При отрицательной реакции эритроциты оседают в виде «пуговки». Обычно в РНГА выявляют антитела с помощью антигенного эритроци-тарного диагностикума, который представ­ляет собой эритроциты с адсорбированными на них антигенами. Иногда применяют антительные эритроцитарные диагностикумы, на которых адсорбированы антитела. Например, можно обнаружить ботулинический токсин, добавляя к нему эритроцитарный антитель­ный ботулинический диагностикум (такую реакцию называют реакцией обратной непря­мой гемагглютинации — РОНГА). РНГА применяют для диагностики инфекционных болезней, определения гонадотропного гормона в моче при установлении беременности, для выявления повышенной чувствительности к лекарственным препаратам, гормонам и в не­которых других случаях.

Реакция коагглютинации. Клетки возбуди­теля определяют с помощью стафилококков, предварительно обработанных иммунной диагностической сывороткой. Стафилококки, содержащие белок А, имеющий сродство к Fc-фрагменту иммуноглобулинов, неспецифически адсорбируют антимикробные анти­тела, которые затем взаимодействуют актив­ными центрами с соответствующими микро­бами, выделенными от больных. В результате коагглютинации образуются хлопья, состо­ящие из стафилококков, антител диагности­ческой сыворотки и определяемого микроба.

Реакция торможения гемагглютинации (РТГА) основана на блокаде, подавлении ан­тигенов вирусов антителами иммунной сы­воротки, в результате чего вирусы теряют свойство агглютинировать эритроциты (рис. 13.3). РТГА применяют для диагностики мно­гих вирусных болезней, возбудители которых (вирусы гриппа, кори, краснухи, клещево­го энцефалита и др.) могут агглютинировать эритроциты различных животных.

Реакцию агглютинации для определения групп крови применяют для установления системы АВО (см. разд. 10.1.4.1) с помощью агглютина­ции эритроцитов антителами иммунной сы­воротки против антигенов групп крови А (II), В (III). Контролем служат: сыворотка, не содер­жащая антител, т. е. сыворотка AB(IV) группы крови; антигены, содержащиеся в эритроцитах групп А (II), В (III). Отрицательный контроль не содержит антигенов, т. е. используют эрит­роциты группы 0 (I).

В реакции агглютинации для определения резус-фактора (см. разд. 10.1.4.1) используют антирезусные сыворотки (не менее двух различных серий). При наличии на мембране ис­следуемых эритроцитов резус-антигена происходит агглютинация этих клеток. Контролем служат стандартные резус-положительные и резус-отрицательные эритроциты всех групп крови.

Реакцию агглютинации для определения антирезусных антител (непрямую реакцию Кумбса) применяют у больных при внутрисо-судистом гемолизе. У некоторых таких боль­ных обнаруживают антирезусные антитела, которые являются неполными, одновалент­ными. Они специфически взаимодействуют с резус-положительными эритроцитами, но не вызывают их агглютинации. Наличие таких неполных антител определяют в непрямой реакции Кумбса. Для этого в систему анти-резусные антитела + резус-положительные эритроциты добавляют антиглобулиновую сыворотку (антитела против иммуноглобули­нов человека), что вызывает агглютинацию эритроцитов (рис. 13.4). С помощью реакции Кумбса диагностируют патологические состо­яния, связанные с внутрисосудистым лизисом эритроцитов иммунного генеза, например ге­молитическую болезнь новорожденных: эрит­роциты резус-положительного плода соединя­ются с циркулирующими в крови неполными антителами к резус-фактору, которые пере­шли через плаценту от резус-отрицательной матери.

 

 

13.3. Реакции преципитации

Реакция преципитации РП (от лат. praecipito — осаждать) — это формирование и осаждение комплекса растворимого молекулярного антигена с антителами в виде помутнения, называемого преципитатом. Он образуется при смешивании антигенов и антител в эквивалентных количествах; избыток одного из них снижает уровень образования иммунного комплекса.

Реакции преципитации ставят в пробирках (реакция кольцепреципитации), в гелях, питательных средах и др. Широкое распространение получили разновидности реакции преципитации в полужидком геле агара или агаро-зы: двойная иммунодиффузия по Оухтерлони, радиальная иммунодиффузия, иммуноэлектрофорез и др.

Реакция кольцепреципитации. Реакцию про­водят в узких преципитационных пробирках с иммунной сывороткой, на которую наслаивают растворимый антиген. При оптимальном соот­ношении антигена и антител на границе этих двух растворов образуется непрозрачное кольцо преципитата (рис. 13.5). Избыток антигена не влияет на результат реакции кольцепреципи­тации вследствие постепенной диффузии ре­агентов к границе жидкости. Если в качестве антигенов в реакции кольцепреципитации ис­пользуют прокипяченные и профильтрованные водные экстракты органов или тканей, то такая реакция называется реакцией термопреципита­ции (реакция Асколи, при сибирской язве).

Реакция двойной иммунодиффузии по Оухтерлони. Для постановки реакции растопленный агаровый гель тонким слоем выливают на стек­лянную пластинку и после его затвердевания в нем вырезают лунки размером 2-3 мм. В эти лунки раздельно помещают антигены и иммун­ные сыворотки, которые диффундируют на­встречу друг другу. В месте встречи в эквивален­тных соотношениях они образуют преципитат в виде белой полосы. У многокомпонентных систем между лунками с разными антигенами и антителами сыворотки появляется несколько линий преципитата; у идентичных антигенов линии преципитата сливаются; у неидентичных—пересекаются (рис. 13.6).

Реакция радиальной иммунодиффузии. Иммунную сыворотку с расплавленным агаровым гелем равномерно наливают на стекло. После застыва­ния в геле делают лунки, в которые помещают антиген в различных разведениях. Антиген, диф­фундируя в гель, образует с антителами кольце­вые зоны преципитации вокруг лунок (рис. 13.7). Диаметр кольца преципитации пропорционален концентрации антигена. Реакцию используют для определения содержания в крови иммуног­лобулинов различных классов, компонентов системы комплемента и др.

Иммуноэлектрофорез — сочетание метода электрофореза и иммунопреципитации: смесь антигенов вносится в лунки геля и разделяет­ся в геле с помощью электрофореза. Затем в канавку параллельно зонам электрофореза вносят иммунную сыворотку, антитела кото­рой, диффундируя в гель, образуют в месте «встречи» с антигеном линии преципитации.

 

Реакция флоккуляции (по Рамону) (от лат. floccus — хлопья шерсти) — появление опалес-ценции или хлопьевидной массы (иммуноп-реципитации) в пробирке при реакции токсин—антитоксин или анатоксин—антитоксин. Ее применяют для определения активности антитоксической сыворотки или анатоксина.

Иммунная электронная микроскопия — электронная микроскопия микробов, чаще вирусов, обработанных соответствующими ан­тителами. Вирусы, обработанные иммунной сывороткой, образуют иммунные агрегаты (микропреципитаты). Вокруг вирионов обра­зуется «венчик» из антител, контрастирован-ный фосфорно-вольфрамовой кислотой или другими электронно-оптически плотными препаратами.

13.4. Реакции с участием комплемента

Реакции с участием комплемента основаны на активации комплемента комплексом антиген—антитело (реакция связывания комплеента, радиального гемолиза и др.).

Реакция связывания комплемента (РСК) заключается в том, что при соответствии друг другу антигены и антитела образуют иммунный комплекс, к которому через Fc-фрагмент антител присоединяется комплемент (С), т. е. происходит связывание комплемента комплексом антиген—антитело. Если же комплекс антиген-антитело не образуется, то комп­лемент остается свободным (рис. 13.8). РСК проводят в две фазы: 1-я фаза — инкубация смеси, содержащей три компонента антиген 4- антитело + комплемент; 2-я фаза (индикаторная) — выявление в смеси свободного комплемента путем добавления к ней гемолитической системы, состоящей из эритроцитов барана, и гемолитической сыворотки, содер­жащей антитела к ним. В 1-й фазе реакции при образовании комплекса антиген—антите­ло происходит связывание им комплемента, и тогда во 2-й фазе гемолиз сенсибилизирован­ных антителами эритроцитов не произойдет; реакция положительная. Если антиген и ан­титело не соответствуют друг другу (в иссле­дуемом образце нет антигена или антитела), комплемент остается свободным и во 2-й фазе присоединится к комплексу эритроцит — ан-тиэритроцитарное антитело, вызывая гемо­лиз; реакция отрицательная.

РСК применяют для диагностики многих инфекционных болезней, в частности сифи­лиса (реакция Вассермана).

Реакцию радиального гемолиза (РРГ) ставят в лунках геля из агара, содержащего эрит­роциты барана и комплемент. После внесе­ния в лунки геля гемолитической сыворотки (антител против эритроцитов барана) вокруг них (в результате радиальной диффузии анти­тел) образуется зона гемолиза. Таким образом можно определить активность комплемента и гемолитической сыворотки, а также антитела в сыворотке крови у больных гриппом, крас­нухой, клещевым энцефалитом. Для этого на эритроцитах адсорбируют соответствующие антигены вируса, а в лунки геля, содержащего данные эритроциты, добавляют сыворотку крови больного. Противовирусные антитела взаимодействуют с вирусными антигенами, адсорбированными на эритроцитах, после чего к этому комплексу присоединяются ком­поненты комплемента, вызывая гемолиз.

Реакция иммунного прилипания (РИП) ос­нована на активации системы комплемента корпускулярными антигенами (бактериями, вирусами), обработанными иммунной сыво­роткой. В результате образуется активирован­ный третий компонент комплемента (СЗЬ), который присоединяется к корпускулярному антигену в составе иммунного комплекса. На эритроцитах, тромбоцитах, макрофагах имеются рецепторы для СЗЬ, благодаря чему при смешивании этих клеток с иммунными комплексами, несущими СЗЬ, происходят их соединение и агглютинация.

13.5.    Реакция нейтрализации

Антитела иммунной сыворотки способны нейтрализовать повреждающее действие мик­робов или их токсинов на чувствительные клетки и ткани, что связано с блокадой микро­бных антигенов антителами, т. е. их нейтрали­зацией. Реакцию нейтрализации (РН) проводят путем введения смеси антиген—антитело жи­вотным или в чувствительные тест-объекты (культуру клеток, эмбрионы). При отсутствии у животных и тест-объектов повреждающего действия микроорганизмов или их антигенов, токсинов говорят о нейтрализующем дейс­твии иммунной сыворотки и, следовательно, о специфичности взаимодействия комплекса антиген—антитело (рис. 13.9).

13.6.    Реакции с использованием меченых
антител или антигенов

13.6.1. Реакция иммунофлюоресценции — РИФ (метод Кунса)

Различают три основные разновидности метода: прямой, непрямой (рис. 13.10), с комплементом. Реакция Кунса является методом экспресс-диагностики для выявления антиге­нов микробов или определения антител.

Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, ме­ченными флюорохромами, способны светить­ся в УФ-лучах люминесцентного микроскопа.

 

 

Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.

Непрямой метод РИФ заключается в выявлении комплекса антиген-антитело с помощью антиглобул и новой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабаты­вают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобули-новой (антикроличьей) сывороткой, мечен­ной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела +антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.

13.6.2. Иммуноферментный метод, или анализ (ИФА)

И ФА — выявление антигенов с помощью соответствующих им антител, конъюгирован-ных с ферментом-меткой (пероксидазой хре­на, бета-галактозидазой или щелочной фос-фатазой). После соединения антигена с ме­ченной ферментом иммунной сывороткой в смесь добавляют субстрат/хромоген. Субстрат расщепляется ферментом, и изменяется цвет продукта реакции — интенсивность окраски прямо пропорциональна количеству связав­шихся молекул антигена и антител.

 

Твердофазный ИФА — наиболее распростра­ненный вариант иммунологического теста, когда один из компонентов иммунной реак­ции (антиген или антитела) сорбирован на твердом носителе, например в лунках план­шеток из полистирола (рис. 13.11).

При определении антител в лунки планше­ток с сорбированным антигеном последова­тельно добавляют сыворотку крови больного, антиглобулиновую сыворотку, меченную фер­ментом, и субстрат (хромоген) для фермента.

Каждый раз после добавления очередного компонента из лунок удаляют несвязавшие-ся реагенты путем тщательного промывания. При положительном результате изменяется цвет раствора хромогена. Твердофазный носитель можно сенсибилизировать не только антигеном, но и антителами. Тогда в лунки с сорбированными антителами вносят искомый антиген, добавляют иммунную сыворот­ку против антигена, меченную ферментом, а затем субстрата для фермента.

Конкурентный вариант ИФА: искомый антиген и меченный ферментом антиген конкурируют друг с другом за связывание ограниченного количества антител иммунной сыворотки. Другой тест — искомые антитела и меченые антитела конкурируют друг с дру­гом за антигены.

ИФА применяют для диагностики вирус­ных, бактериальных и паразитарных болезней в частности для диагностики ВИЧ-инфекций, гепатита В и др., а также определения гормо­нов, ферментов, лекарственных препаратов и других биологически активных веществ, содержащихся в исследуемом материале в ми­норных концентрациях — 10-10-10-12 г/л.

13.6.3. Радиоиммунологический метод, или анализ (РИА)

Высокочувствительный метод, основанный на реакции антиген—антитело с примене­нием антигенов или антител, меченных радионуклидом (l25J, 14C, 3Н, 51Сг и др.). После их взаимодействия отделяют образовавшийся радиоактивный иммунный комплекс и опре­деляют его радиоактивность в соответствую­щем счетчике (бета- или гамма-излучение): интенсивность излучения прямо пропорцио­нальна количеству связавшихся молекул ан­тигена и антител.

При твердофазном варианте РИА один из компонентов реакции (антиген или антитела) сорбирован на твердом носителе, например в лунках микропанелей из полистирола. Другой вариант метода — конкурентный РИА. ис­комый антиген и меченный радионуклидом антиген конкурируют друг с другом за свя­зывание ограниченного количества антител иммунной сыворотки. Этот вариант исполь­зуют для определения количества антигена в исследуемом материале.

РИА применяют для выявления антигенов микробов, определения гормонов, фермен­тов, лекарственных веществ и иммуноглобу­линов, а также иных веществ, содержащихся в исследуемом материале в минорных концент­рациях — 10-10-10-12г/л. Метод представляет определенную экологическую опасность.

 

 

 

13.6.4. Иммуноблоттинг

Иммуноблоттинг (ИБ) — высокочувстви­тельный метод, основанный на сочетании электрофореза и И ФА или РИА.

Антиген выделяют с помощью электрофоре­за в полиакриламидном геле, затем переносят его (блоттинг — от англ. blot, пятно) из геля на активированную бумагу или нитроцеллюлоз-ную мембрану и проявляют с помощью ИФА. Фирмы выпускают такие полоски с «блотами» антигенов. На эти полоски наносят сыворотку больного. Затем после инкубации отмывают от несвязавшихся антител больного и наносят сыворотку против иммуноглобулинов человека, меченную ферментом. Образовавшийся на полоске комплекс антиген + антитело больно­го + антитело против Ig человека выявляют до­бавлением субстрата/хромогена, изменяющего окраску под действием фермента (рис. 13.12).

И Б используют как диагностический метод при ВИЧ-инфекции и др.

 

 

ГЛАВА 14. ИММУНОПРОФИЛАКТИКА И ИММУНОТЕРАПИЯ

 

14.1. Сущность и место иммунопрофилактики и иммунотерапии в медицинской практике

Иммунопрофилактика и иммунотерапия являются разделами иммунологии, которые изучают и разрабатывают способы и методы специфической профилактики, лечения и диа­гностики инфекционных и неинфекционнъгх болезней с помощью иммунобиологических препаратов, оказывающих влияние на функ­цию иммунной системы, или действие которых основано на иммунологических принципах.

Иммунопрофилактика направлена на со­здание активного или пассивного иммуни­тета к возбудителю инфекционной болезни, или его антигену, а также патогену с целью предупреждения возможного заболевания путем формирования невосприимчивости к ним организма. Иммунотерапия направлена на лечение уже развившейся болезни, в ос­нове которой лежит нарушение функции им­мунной системы, или же иммунной системе принадлежит ведущая роль в восстановлении гомеостаза, т. е. восстановлении здоровья.

Иммунопрофилактика и иммунотерапия применяются в случаях, когда необходимо:

а)   сформировать, создать специфический иммунитет или активизировать деятельность иммунной системы;

б)   подавить активность отдельных звеньев иммунной системы;

в)   нормализовать работу иммунной системы, если имеются отклонения ее функции в ту или иную сторону.

Иммунопрофилактика и иммунотерапия находят широкое применение в различных областях медицины, в первую очередь в про­филактике и лечении инфекционных болез­ней, аллергий, иммунопатологических состо­яний, в онкологии, трансплантологии, при первичных и вторичных иммунодефицитах и других болезнях.

При этом иммунопрофилактика, а иногда и иммунотерапия являются единственными или же ведущими способами среди других ме­дицинских воздействий для предупреждения или лечения болезней. Например, профилак­тику полиомиелита, кори и других массовых инфекционных болезней невозможно себе представить без вакцинации. Только благода­ря вакцинации, на земном шаре ликвидиро­вана натуральная оспа, планируется к 2005 г. ликвидировать полиомиелит, нет всеохваты­вающих эпидемий детских, особо опасных и других инфекционных болезней.

В лечении таких токсинемических инфекций, как ботулизм, столбняк, ведущее значение имеет серотерапия, т. е. применение антитоксических сывороток, и иммуноглобулин.

В терапии онкологических болезней все более широкое применение находят иммуноцитокины. Диагностические иммунопрепа-раты стали неотъемлемой частью врачебного арсенала в клиниках инфекционных и неин­фекционных болезней.

Как было сказано, принцип иммунопрофи­лактики и иммунотерапии сводится к тому или иному воздействию на иммунную систему, т. е. к активации, супрессии или нормализации ее работы. Это воздействие может быть активным или пассивным, специфическим или неспеци­фическим. Для такого дифференцированного действия на иммунную систему, которое ис­пользуется в иммунопрофилактике и иммуно­терапии, разработано множество препаратов, объединенных в группу под названием имму­нобиологические препараты (ИБП).

 

14.2. Иммунобиологические препараты

14.2.1. Общая характеристика и классификация ИБП

Иммунобиологические препараты имеют сложный состав, отличаются по своей природе, способам получения и применения, целе­вому назначению. Однако, как указывалось выше, их объединяет то, что они действуют или на иммунную систему, или через иммун­ную систему, или же механизм их действия основан на иммунологических принципах.

Действующим началом в ИБП являются или антигены, полученные тем или иным способом, или антитела, или микробные клетки и их дериваты, или биологически ак­тивные вещества типа иммуноцитокинов, иммунокомпетентные клетки и другие иммунореагенты. Кроме действующего начала, ИБП могут, в зависимости от их природы и характера, включать стабилизаторы, адъ-юванты, консерванты и другие субстанции, улучшающие качество препарата (например, витамины, адаптогены).

ИБП могут применяться парентерально, перорально, аэрозольно или другими спосо­бами, поэтому им придают соответствующую лекарственную форму: стерильные растворы и суспензии или лиофилизированные растворимые порошки для инъекций, таблетки, свечи, аэрозоли и т. д. Для каждого ИБП установлены строго регламентированные дози­ровки и схемы применения, показания и про­тивопоказания, а также побочные эффекты.

В настоящее время выделяют 5 групп имму­нобиологических препаратов (А. А. Воробьев):

первая группа — ИБП, получаемые из жи­вых или убитых микробов (бактерий, вирусов, грибов) или микробных продуктов и исполь­зуемые для специфической профилактики или терапии. К ним относятся живые и инактивированные корпускулярные вакцины, суб­клеточные вакцины из микробных продуктов, анатоксины, бактериофаги, пробиотики;

вторая группа — ИБП на основе специфи­ческих антител. К ним относятся иммуногло­булины, иммунные сыворотки, иммуноток-сины, антитела-ферменты (абзимы), рецеп-торные антитела, мини-антитела;

третья группа — иммуномодуляторы для иммунокоррекции, лечения и профилактики инфекционных и неинфекционных болезней, иммунодефицитов. Сюда относятся экзоген­ные иммуномодуляторы (адъюванты, некото­рые антибиотики, антиметаболиты, гормоны) и эндогенные иммуномодуляторы (интерлейкины, интерфероны, пептиды тимуса, миело-пептиды и др.);

четвертая группа — адаптогены — сложные химические вещества растительного, живот­ного или иного происхождения, обладающие широким спектром биологической активнос­ти, в том числе действием на иммунную сис­тему. К ним относятся, например, экстракты женьшеня, элеутерококка и других растений, тканевые лизаты, различные биологически активные пищевые добавки (липиды, полиса­хариды, витамины, микроэлементы и другие микронутриенты);

пятая группа — диагностические препараты и системы для специфической и неспецифичес­кой диагностики инфекционных и неинфек­ционных болезней, с помощью которых можно обнаруживать антигены, антитела, ферменты, продукты метаболизма, биологически актив­ные пептиды, чужеродные клетки и т. д.

Разработкой и изучением ИБП занимается раздел иммунологии — иммунобиотехнология.

Ниже дана характеристика этих пяти групп ИБП.

 

14.2.2. Вакцины

Термин «вакцина» произошел от француз­ского vaccaкорова. Его ввел Л. Пастер в честь Дженнера, применившего вирус коро­вьей оспы для иммунизации людей против натуральной оспы человека.

Вакцины используют, в основном, для активной специфической профилактики, а иногда и для лечения инфекционных болез­ней. Действующим началом в вакцинах яв­ляется специфический антиген, в качестве которого используют:

  • живые ослабленные микробы, лишенные патогенности, но сохранившие антигенные свойства;
  • инактивированные тем или иным спосо­бом цельные микробные клетки или вирус­ные частицы;
  • субклеточные антигенные комплексы (протективные антигены), выделенные из микробов;
  • микробные метаболиты (токсины-ана­токсины), играющие основную роль в патоге­незе инфекций и обладающие специфической антигенностью;
  • — химически или биологически синтезиро­ванные молекулярные антигены, в том чис­ле полученные с помощью рекомбинантных штаммов микробов, аналогичные природным антигенам.

Вакцина представляет собой сложный И БП, в состав которого наряду со специфическим антигеном, исходя из природы и лекарствен­ной формы препарата, включают стабилиза­торы, консерванты, адъюванты. В качестве стабилизаторов, предохраняющих антиген от разрушения, например, при производстве или при длительном хранении вакцины, исполь­зуют гомологичные белки (альбумин челове­ка), сахарозо-агар-желатину и др. В качестве консервантов, не допускающих размножения случайно попавшей в препарат микрофлоры, применяют мертиолят (1:10 000), формалин и другие антимикробные препараты. Для повы­шения иммуногенности антигена в некоторые вакцины добавляют адъюванты.

В табл. 14.1 приведена классификация вак­цин в зависимости от их природы, характера и способа получения (А. А. Воробьев).

 

14.2.2.1. Живые вакцины

Живые вакцины представляют собой препараты, в которых действующим началом яв­ляются ослабленные тем или иным способом, потерявшие вирулентность, но сохранившие специфическую антигенность штаммы пато­генных микробов (бактерий, вирусов), полу­чившие название аттенуированных штаммов. Аттенуация (ослабление) возможна путем длительного воздействия на штамм химичес­ких (мутагены) или физических (температу­ра, радиация) факторов или же длительные пассажи через организм невосприимчивых животных или другие биообъекты (эмбрионы птиц, культуры клеток). В результате таких воздействий на культуры патогенных бакте­рий или вирусов селекционируются штаммы со сниженной вирулентностью, но способные при введении в организм человека размно­жаться и вызывать вакцинный процесс (со­здавать специфический иммунитет), не вызы­вая инфекционного заболевания.

Аттенуацию патогенных бактерий с це­лью получения вакцинных штаммов впер­вые предложил Л. Пастер на примере вируса бешенства, холеры кур, бацилл сибирской язвы. В настоящее время этот способ ши­роко используется в вакцинологии. В ка­честве живых вакцин можно использовать дивергентные штаммы, т. е. непатогенные для человека микробы, имеющие общие протек-тивные антигены с патогенными для челове­ка возбудителями инфекционных болезней. Классическим примером дивергентных живых вакцин является вакцина против натуральной оспы человека, в которой используется непа­тогенный для человека вирус оспы коров. Эти два вируса имеют общий протективный анти­ген. К дивергентным вакцинам следует также отнести БЦЖ — вакцину, в которой исполь­зуются родственные в антигенном отношении микобактерии бычьего типа.

В последние годы успешно решается проблема получения живых вакцин генно-инженерным способом. Принцип получения таких вакцин сводится к созданию непатогенных для человека безопасных рекомбинантных штаммов, несу­щих гены протективных антигенов патогенных микробов и способных при введении в организм человека размножаться, синтезировать специ­фический антиген и, таким образом, создавать иммунитет к патогенному возбудителю. Такие вакцины называют векторными. В качестве векторов для создания рекомбинантных штаммов чаще используют вирус осповакцины, непато­генные штаммы сальмонелл и другие микробы. Уже получены экспериментально и проходят клинические испытания рекомбинантные штам­мы осповакцины и сальмонелл, продуцирующие антигены вируса гепатита В, клещевого энцефа­лита, ВИЧ и других патогенных микробов.

 

Таблица 14.1. Классификация вакцин (по А. А. Воробьеву)

Живые вакциныКомбинированные вакцины (живые + неживые)Неживые вакцины (активированные)
КорпускулярныеМолекулярные
Аттенуированные

Дивергентные

Рекомбинантные (векторные)

 Цельноклеточные

Цельновирионные Субклеточные Субвирионные

Биосинтетические природные

Генно-инженерные биосинтетические

Химически синтезированные

 

Живые вакцины независимо от того, ка­кие штаммы в них включены (аттенуирован-ные, дивергентные или векторные), получают путем культивирования штаммов на искус­ственных питательных средах (бактерии), в культурах клеток или в куриных эмбрионах (вирусы), и из полученных чистых культур вакцинных штаммов конструируют вакцин­ный препарат. В живую вакцину, как пра­вило, включают стабилизатор, не добавляют консервант, вакцину подвергают лиофильно-му высушиванию. Дозируют вакцину числом живых бактерий или вирусов в зависимости от способа применения: накожно, подкожно, внутримышечно, перорально. Обычно живые вакцины применяют однократно с периоди­ческими ревакцинациями.

 

14.2.2.2. Инактивированные (убитые) вакцины

Инактивированные вакцины в качестве действующего начала включают убитые хи­мическим или физическим методом культу­ры патогенных бактерий или вирусов (цель-ноклеточные, цельновирионные вакцины) или же извлеченные из патогенных микробов (иногда вакцинных штаммов) комплексы, содержащие в своем составе протективные антигены (субклеточные, субвирионные вак­цины). Для инактивации бактерий и вирусов применяют формальдегид, спирт, фенол или температурное воздействие, ультрафиолето­вое облучение, ионизирующую радиацию.

Для выделения из бактерий и вирусов анти­генных комплексов (гликопротеинов, ЛПС, белков) применяют трихлоруксусную кис­лоту, фенол, ферменты, изоэлектрическое осаждение, ультрацентрифугирование, уль­трафильтрацию, хроматографию и другие фи­зические и химические методы.

Получают инактивированные вакцины путем выращивания на искусственных питательных средах патогенных бактерий или вирусов, ко­торые затем подвергают инактивации, разру­шению (в случае необходимости), выделению антигенных комплексов, очистке, конструи­рованию в виде жидкого или лиофильно вы­сушенного препарата. В препарат обязательно добавляют консервант, иногда — адъюванты.

Дозируют вакцину в антигенных единицах; применяют, как правило, подкожно, внут­римышечно в виде нескольких инъекций на курс вакцинации.

 

14.2.2.3. Молекулярные вакцины

В молекулярных вакцинах антиген нахо­дится в молекулярной форме или же в виде фрагментов его молекул, определяющих специ­фичность антигенности, т. е. в виде эпитопов, детерминант. Протективный антиген в виде молекул можно получить биологическим син­тезом в процессе культивирования природных патогенных микробов, например, токсигенных бактерий — дифтерии, столбняка, ботулизма и др. Синтезируемый этими бактериями ток­син в молекулярной форме превращают за­тем в анатоксин, т. е. нетоксичные молекулы, сохраняющие специфическую антигенность и иммуногенность. Развитие генной инженерии, создание рекомбинантных бактерий и вирусов, способных синтезировать молекулы несвойс­твенных им антигенов, открыли возможности получения молекулярных антигенов в процессе культивирования рекомбинантных штаммов. Показано, что таким образом можно получить антигены ВИЧ, вирусных гепатитов, малярии, кори, полиомиелита, гриппа, туляремии, бру­целлеза, сифилиса и других возбудителей бо­лезней. В медицинской практике уже исполь­зуется молекулярная вакцина против гепатита В, полученная из антигена вируса, продуциру­емого рекомбинантным штаммом дрожжей. В будущем способ получения молекулярных вак­цин из антигенов, синтезируемых рекомбинан-тными штаммами, будет развиваться быстрыми темпами. Наконец, антиген в молекулярной форме, особенно детерминанты антигена, мож­но получить химическим синтезом, после рас­шифровки его структуры. Этим способом уже синтезированы детерминанты многих бактерий и вирусов, в том числе ВИЧ. Однако химичес­кий синтез антигенов более трудоемок и имеет ограниченные возможности по сравнению с биосинтезом. Из полученных биосинтезом или химическим синтезом антигенов или его эпитопов конструируют молекулярные вакцины.

 

14.2.2.4.    Анатоксины (токсоиды)

Примером молекулярных вакцин являются анатоксины: дифтерийный, столбнячный, бо-тулинический (типов А, В, Е), гангренозный (перфрингенс, нови и др.), стафилококковый, холерный.

Принцип получения анатоксинов состоит в том, что образующийся при культивировании соответствующих бактерий токсин в молекулярном виде превращают в нетоксичную, но сохраняющую специфическую антигенность форму — анатоксин путем воздействия 0,4% формальдегида и тепла (37 °С) в течение 3-4 недель. Полученный анатоксин подвергают очистке и концентрированию физическими и химическими методами для удаления балластных веществ, состоящих из продуктов бактерий и питательной среды, на которой они выращивались. К очищенному и концентрированному анатоксину для повышения его иммуногенности добавляют адъюванты, обычно сорбенты — гели А1(ОН)3 и А1(Р04). Полученные таким образом препараты назвали очищенными сорбированными анатоксинами.

Дозируют анатоксины в антигенных еди­ницах: единицах связывания (ЕС) анатоксина специфическим антитоксином или в едини­цах флокуляции (Lf). Анатоксины относятся к числу наиболее эффективных профилактических препаратов. Благодаря иммунизации диф­терийным и столбнячными анатоксинами рез­ко снижена заболеваемость и ликвидированы эпидемии дифтерии и столбняка. Очищенные сорбированные анатоксины применяют под­кожно или внутримышечно по схеме, предус­мотренной календарем прививок.

 

14.2.2.5.    Синтетические вакцины

Молекулы антигенов или их эпитопы сами по себе обладают низкой иммуногенностью по-видимому в связи с деструкцией их в орга­низме ферментами, а также недостаточно ак­тивным процессом их адгезии иммунокомпетентными клетками, из-за относительно низ­кой молекулярной массы антигенов. В связи с этим ведутся поиски повышения иммуно-геннооти молекулярных антигенов путем ис­кусственного укрупнения их молекул за счет химической или физико-химической связи («сшивки») антигена или его детерминанты с полимерными крупномолекулярными без­вредными для организма носителями (типа поливинилпирролидона и других полимеров), который бы играл роль «шлеппера» и роль адъюванта.

Таким образом, искусственно создается комплекс, состоящий из антигена или его детерминанты + полимерный носитель + адъювант. Часто носитель совмещает в себе роль адъюванта. Благодаря такой композиции тимусзависимые антигены можно превратить в тимуснезависимые; такие антигены будут длительно сохраняться в организме и легче адгезироваться иммунокомпетентными клет­ками. Вакцины, созданные на таком при­нципе, получили название синтетических. Проблема создания синтетических вакцин до­вольно сложная, но она активно разрабатыва­ется, особенно в нашей стране (Р. В. Петров, \ Р. М. Хаитов). Уже создана вакцина против гриппа на полиоксидонии, а также ряд других экспериментальных вакцин.

 

14.2.2.6. Адъюванты

Как было сказано выше, для усиления им-муногенности вакцин применяют адъюванты (от лат. adjuvantпомощник). В качестве адъювантов используют минеральные сорбен­ты (гели гидрата окиси и фосфата аммония), полимерные вещества, сложные химические соединения (ЛПС, белково-липополисаха-ридные комплексы, мурамилдипептид и его производные и др.); бактерии и компоненты бактерий, например вытяжки БЦЖ, из ко­торых готовят адъювант Фрейнда; инакти-вированные коклюшные бактерии, липиды и эмульгаторы (ланолин, арлацел); вещест­ва, вызывающие воспалительную реакцию (сапонин, скипидар). Как видно, все адъю­ванты являются чужеродными для организма веществами, имеют различный химический состав и происхождение; сходство их состоит в том, что все они способны усиливать иммуногенность антигена. Механизм действия адъювантов сложный. Они действуют как на антиген, так и на организм (А. А. Воробьев). Действие на антиген сводится к укрупнению его молекулы (сорбция, химическая связь с полимерным носителем), т. е. превращению растворимых антигенов в корпускулярные. В результате антиген лучше захватывается и активнее представляется фагоцитирующими и другими иммунокомпетентными клетками, т.е. превращается из тимусзависимого в ти-муснезависимый антиген. Кроме того, адъю-ванты вызывают на месте инъекции воспали­тельную реакцию с образованием фиброзной капсулы, в результате чего антиген длительно сохраняется, депонируется на месте инъек­ции и, поступая из «депо», длительное время действует по принципу суммации антигенных раздражений (ревакцинирующий эффект). В связи с этим адъювантные вакцины назы­вают депонированными. Адъюванты также непосредственно активируют пролиферацию клеток Т-, В-, А-систем иммунитета и уси­ливают синтез защитных белков организма. Адъюванты усиливают иммуногенность ан­тигенов в несколько раз, а такие растворимые молекулярные белковые антигены, как диф­терийный, столбнячный, ботулинический анатоксины, — до ста раз (А. А. Воробьев).

 

14.2.2.7. Ассоциированные вакцины

С целью сокращения числа вакцин и числа инъекций при проведении массовой вакци-нопрофилактики уже разработаны и ведутся дальнейшие работы по созданию ассоции­рованных вакцин, т. е. препаратов, включа­ющих несколько разнородных антигенов и позволяющих проводить иммунизацию про­тив нескольких инфекций одновременно. Создание таких вакцин научно обоснованно, так как иммунная система может одновремен­но отвечать на десятки различных антигенов. Основная задача при создании ассоциирован­ных вакцин состоит в сбалансированности входящих в ее состав антигенов, чтобы не было их взаимной конкуренции и чтобы препарат не вызывал повышенных поствакцинальных реакций. В состав ассоциированных препара­тов могут входить как инактивированные, так и живые вакцины. Если в препарат входят однородные антигены, такую ассоциированную вакцину называют поливакциной. Примером может служить живая полиомиелитная поли­вакцина, в которую входят аттенуированные штаммы вируса полиомиелита I, II, III типа, или полианатоксин, куда входят анатоксины против столбняка, газовой гангрены и ботулизма.

Если ассоциированный препарат состоит из разнородных антигенов, то его целесооб­разно называть комбинированной вакциной. Комбинированной вакциной является, на­пример, АКДС-вакцина, состоящая из ина-ктивированной корпускулярной коклюшной вакцины, дифтерийного и столбнячного ана­токсинов. Возможна также комбинированная иммунизация, когда одномоментно раздельно вводят несколько вакцин в различные участки тела — например против оспы (накожно) и чумы (подкожно). К комбинированной вак­цинации прибегают в сложной противоэпи­демической обстановке (К. Г. Гапочко и др.).

 

14.2.2.8. Массовые способы вакцинации

Успех вакцинопрофилактики зависит не только от качества вакцины, но и от процента и быстроты охвата населения или групп риска прививками. Производительность, т. е. число вакцинированных людей в один час бригадой вакцинаторов, существенно зависит от спо­соба введения препарата. Так, при накожном (скарификационном) способе одна бригада за час может провакцинировать примерно 20 че­ловек, при подкожном шприцевом способе — 30-40 человек, а с помощью безыгольного инъектора — порядка 1200 человек за час.

В вакцинопрофилактике применяется не­сколько способов введения вакцин, позволя­ющих в короткие сроки вакцинировать боль­шое число людей, т. е. обладающих большой производительностью. Эти способы получи­ли название массовых способов вакцинации (А. А. Воробьев, В. А. Лебединский). К ним от­носятся безыгольная инъекция, пероральный и аэрозольный способы введения вакцин.

Безыгольный способ основан на введении вакцин с помощью безыгольных инъекто-ров пистолетного типа, в которых, благодаря высокому давлению, создаваемому в прибо­ре с помощью гидравлики или инертного газа, формируется струя жидкой вакцины проникающая в необходимой объемной дозе (0,5—1мл) через кожу на заданную глуби­ну (накожно, подкожно, внутримышечно). Разработано множество конструкций безы­гольных инъекторов. Такие инъекторы позво­ляют при хорошей организации прививочной кампании за один час провакцинировать до 1200 человек.

Пероральный способ является самым быст­рым, щадящим, привлекательным и адекват­ным, так как позволяет без насильственного нарушения наружных покровов, безболезнен­но прививать огромное число людей (до 1500 человек/ч одной бригадой) в любой обстанов­ке (в поликлинике, дома, на вокзале, в поез­дах, самолетах и др.), без соблюдения правил асептики, медицинских материалов (спирт, йод, шприцы, вата), не требует электроэнер­гии и приспособленных помещений.

К сожалению, для перорального способа вакцинации пока разработано лишь ограни­ченное число вакцин (живая полиомиелит-ная, оспенная, чумная, противоэнцефалитная вакцины), хотя предпосылки для создания пероральных вакцин против других инфек­ций (корь, грипп, бруцеллез, туляремия и др.) имеются. Пероральные вакцины могут иметь различную лекарственную форму в за­висимости от локализации в желудочно-ки­шечном тракте «входных ворот» для антигена: оральные (жидкие и таблетированные, в виде конфет-драже), энтеральные (таблетирован­ные с кислотозащитным покрытием, в жела­тиновых капсулах) или орально-энтеральные (таблетированные). В последние годы вни­мание привлекают вакцины в виде суппози­ториев для перректальной и первагинальной аппликации. Пероральные и перректальные вакцины обеспечивают не только местный иммунитет слизистых оболочек (мукозальный иммунитет), но и иммунитет всего организма; пероральные вакцины иногда называют му-козальными.

Аэрозольный способ основан на введении вакцины через дыхательные пути в виде жид­ких или сухих аэрозолей. Для этого в за­крытых помещениях, в которых размещаются вакцинируемые, с помощью распылителей создают аэрозоль вакцины в расчетных дозировках и выдерживают определенную экспозицию. Аэрозоль вакцины проникает через верхние дыхательные пути во внутреннюю среду организма, обеспечивая как местный, так и общий иммунитет.

Производительность аэрозольного способа не превышает 600-800 человекочас на одну бригаду вакцинаторов. К сожалению, этот метод сложен: требуются распыливающие ус­тройства, электроэнергия; не обеспечивает­ся равномерность дозировки вакцины для каждого вакцинируемого; возможно распро­странение вакцинного препарата за пределы помещений; после каждого сеанса требуется обработка помещений с целью удаления осев­ших аэрозолей вакцины и т. д. В связи с пере­численным аэрозольная вакцинация является резервным способом — на случай сложной эпидемической обстановки.

В вакцинопрофилактике иногда использу­ют интраназальный способ аппликации жи­вых вакцин, например против гриппа, корни других инфекций.

 

14.2.2.9. Условия эффективности применения вакцин

Эффективность вакцинации зависит от трех факторов: а) качества, т. е. иммуногенности, вакцины; б) состояния организма вак­цинируемого; в) схемы и способа применения вакцины.

Качество вакцины, т. е. ее иммунизирую­щий эффект, побочные нежелательные реак­ции, которые она может вызывать, зависят от природы, т. е. иммуногенных свойств антиге­на, характера иммунитета (клеточный, гумо­ральный и т.д.), дозировки антигена. Между дозой антигена и напряженностью вызывае­мого иммунитета существует математическая зависимость (см. раздел 10.1.2.2.) установлен­ная А. В. Марковичем и А. А. Воробьевым и названная уравнением антигенности:

LgH = А + В1&Ц,

где Я— напряженность иммунитета; Д—доза антигена; А — коэффициент, характеризующий качество (иммуногенность) единицы антигена; В — коэффициент, характеризующий иммуно-реактивность (отвечаемость) организма.

По чувствительности к каждому антигену все люди существенно (в десятки и даже со­тни раз) отличаются между собой, причем это различие приближается к кривой нормального распределения. Поэтому при создании любой вакцины в качестве иммунизирующей дози­ровки подбирают дозу антигена, обеспечива­ющую при определенной схеме применения препарата развитие иммунитета не менее чем у 95 % привитых. Обычно это достигается при 2-3-кратном введении вакцины. При такой схеме вакцинации максимально использует­ся ревакцинирующий эффект. Безусловно, на эффективность вакцинации существенное влияние оказывает иммунореактивность вак­цинируемого, т. е. его способность отвечать на антиген, которая зависит от состояния иммун­ной системы и физиологического состояния организма. Особенно влияет на эффектив­ность вакцинации наличие первичных и вто­ричных иммунодефицитов, и это естественно, так как иммунная система в этих случаях не в состоянии отреагировать полноценной защи­той. Однако имеет значение и общефизиоло­гическое состояние организма, которое ока­зывает влияние на общую и иммунологичес­кую реактивность последнего. Известно, что на общую реактивность организма оказывают влияние полноценность питания (особенно белкового), наличие витаминов (особенно А и С), экологические и социальные условия жизни, профессиональные вредности, сомати­ческие и инфекционные болезни и даже кли-матогеографические условия. Понятно, что при неблагоприятных условиях, отражающих­ся на общей физиологической реактивности организма, способность иммунной системы отвечать полноценной реакцией на антиген существенно снижена, но возрастает риск уве­личения нежелательных поствакцинальных осложнений. Поэтому существует перечень не только показаний, но и противопоказаний к вакцинации.

Иммунологическую эффективность вакцин предварительно оценивают в эксперименте, а окончательно — в эпидопыте. В экспери­ментальных условиях иммуногенность опре­деляют по коэффициенту защиты на чувс­твительных к антигену и, соответственно, к патогенному микробу модельных животных (белые мыши, морские свинки, кролики, обе­зьяны). Определяют процент заболевших или павших животных в группе иммунизирован­ных вакциной и в группе контрольных не-иммунизированных животных (при введении им определенной дозы вирулентной культуры или токсина).

Коэффициент защиты представляет собой отношение процента павших или заболевших животных в опытной и контрольной группах. Например, если в опытной группе погибло 10 % животных, а в контрольной — 90 %, то коэффициент защиты равен: 90/10=9.

В эпидопыте устанавливают коэффици­ент эффективности вакцинации, определяя в больших коллективах людей соотношение числа или процента заболевших в группе, подвергшейся вакцинации, и в равноценной группе невакцинированных людей. В табл. 14.2 приведены примерные величины коэф­фициента защиты, полученные в экспери­менте для отдельных вакцин.

14.2.2.10. Общая характеристика вакцин, применяемых в практике

Для вакцинопрофилактики в настоящее время применяется примерно 40 вакцин, по­ловина из которых — живые вакцины.

Перечень основных вакцин, их примерная защитная эффективность и авторы, разра­ботавшие вакцины, приведены в табл. 14.2, из которой видно, что вакцины существенно различаются по своей эффективности, иногда в десятки раз. Однако независимо от этого применение в практике всех вакцин целесо­образно, о чем свидетельствует значительное снижение заболеваемости и смертности среди вакцинированных, что позволяет не только сохранить здоровье и даже жизнь миллионам людей, но и дает большой экономический эффект. Вакцинация является наиболее эф­фективным и экономичным способом борьбы с инфекционной заболеваемостью.

Длительное время шла дискуссия по вопро­су, какие вакцины предпочтительнее — живые или инактивированные. Сравнение этих двух групп вакцин по ряду показателей (иммуно­генность, безвредность, реактогенность, про­стота применения, стандартность, экономич­ность производства и др.) привело к выводу о

Таблица 14.2. Перечень основных вакцин, применяемых для иммунопрофилактики

Вид вакциныВакцинаНаименование вакцин­ного штаммаКоэффи­циент защитыАвторы
Живые бак­териальныеЧумнаяEV10Г. Жерар, Ж. Робик
Туляремийная1 ^50-100Б. Эльберт, Н. Гайский
СибиреязвеннаяСТИ-150-100Н. Гинзбург, Л. Тамарин
Бруцеллезная19 ВА10-30П. Вершилова
ТуберкулезнаяБЦЖ10А. Кальмет, К. Герен
Ку-лихорадкаМ-4450-100П. Здродовский, В. Гениг
Живые ви­русныеОспеннаяЛистер, М-63500С. Мареникова и др.
КореваяЛ-16, ЭШИидр.20-30А. Смородинцев, М. Чумаков и др.
ГриппознаяЛенинград и др.2-3А. Смородинцев и др.
Полиомиелитная1, 2, Зтип50А. Сэбин, М. Чумаков
Паротитная 50А. Смородинцев, Н. Кличко
Желтой лихорадки1 / Д100М. Тейлер
Венесуэльского энце­фаломиелита лошадей№23010А. Воробьев, В. Андреев
АнатоксиныДифтерийный, столбнячный 100Г. Рамон и др.
Ботулинические (А, В, С, D, Е) 100А. Воробьев, К. Матвеев
Секстанатоксин

АКДС (адсорбирован­ная коклюшно-дифте-рийно-столбнячная)

 100А. Воробьев, Г. Выгодчиков и др.
 

 

   
Инактивирр-ванные бак­терийныеБрюшнотифозная СыпнотифознаяПатогенные штаммы5-10 
   10Р. Вейгль
Инактивированные вирусныеГриппознаяТоже2-3 
Гепатитная А 5-10 
Герпетическая 5-10 
Клещевой энцефалит 10 
Бешенство 10-30 
Генно-инже­нернаяГепатитная В (дрожжевая)Рекомбинантный штам дрожжей10Многие авторы

 

том, что предпочтительнее та вакцина (будь то живая или убитая), которая обеспечивает наиболее высокий защитный эффект, дает лучшее результаты по снижению инфекци­онной заболеваемости и не наносит при этом ущерба здоровью вакцинируемым.

Существуют общие требования ко всем вак­цинам. Любой рекомендуемый для вакцинации препарат должен быть: иммуногенным, безопасным, нереактогенным, не вызывать аллергических реакций, не обладать терато-генностью, онкогенностью; штаммы, из кото­рых готовят вакцину, должны быть генетичес­ки стабильными, вакцина должна обладать длительным сроком хранения, производство ее должно быть технологичным, а способ применения — по возможности, простым и доступным для массового применения.

 

14.2.2.11. Показания и противопоказания к вакцинации

Показаниями к вакцинации являются нали­чие или угроза распространения инфекционных заболеваний, а также возникновение эпидемий среди населения. При массовом проведении профилактических прививок должны учиты­ваться противопоказания к вакцинации, так как при введении практически любой вакцины мо­гут быть нежелательные поствакцинальные ос­ложнения у лиц с теми или иными отклонения­ми в состоянии здоровья. Противопоказания определены для каждой вакцины в наставлении по ее применению. Общими противопоказани­ями к вакцинации являются:

  • острые инфекционные и неинфекцион­ные заболевания;
  • аллергические состояния;
  • заболевания ЦНС;
  • хронические заболевания паренхиматоз­ных органов (печени, почек);
  • тяжелые заболевания сердечно-сосудис­той системы;
  • выраженные иммунодефициты;
  • наличие злокачественных новообразований.

Поствакцинальные реакции в виде крат­ковременного повышения температуры те­ла, местных проявлений (гиперемия, отек на месте инъекции), если они не превышают границу указанных в наставлении по приме­нению вакцины, не являются противопоказа­нием к прививкам.

14.2.2.12. Календарь прививок

В каждой стране, в том числе и в России, действует календарь прививок (утвержден Министерством здравоохранения), в котором регламентируется обоснованное проведение во все возрастные периоды человека вакцинаций против определенных инфекционных болез­ней. В календаре указывается, какими вакци­нами и по какой временной схеме должен быть привит каждый человек в детском возрасте и во взрослом периоде. Так, в детском возрасте (до 10 лет) каждый человек должен быть при­вит против туберкулеза, кори, полиомиелита, коклюша, дифтерии, столбняка, гепатита В, а в эндемичных районах — по особо опасным забо­леваниям и против этих инфекций.

В России принят Федеральный закон «О вакцинопрофилактике инфекционных заболеваний человека», который определяет права и обязанности граждан и отдельных групп населения в области вакцинопрофи-лактики, а также правовое регулирование го­сударственных органов, учреждений, долж­ностных лиц и установление их ответствен­ности в области вакцинопрофилактики.

 

14.2.3. Бактериофаги

Бактериофаги относятся к иммунобиоло­гическим препаратам, созданным на осно­ве вирусов, поражающих бактерии. Находят применение в диагностике, профилактике и терапии многих бактериальных инфекций (брюшной тиф, дизентерия, холера и т. д.). Механизм действия бактериофагов основан на специфичности фагов к размножению в соответствующих бактериях, что ведет к ли­зису клеток. Следовательно, лечение и про­филактика с помощью бактериофагов носят специфический характер, так как направлены на уничтожение (лизис) бактерий. На этом же принципе основаны фагодиагностика, специ­фическая индикация и идентификация бактерий с помощью фагов (фаготипирование). Бактериофаги применяют наряду с другими ИБП в случае эпидемических вспышек ин­фекционных болезней для предупреждения их распространения, а также для лечения больных с точно установленным диагнозом и фаготипированным возбудителем.

Бактериофаги получают культивированием пораженных фагом бактерий на питательных средах и выделением из культуральной жидкос­ти фильтрата, содержащего фаги. Этот филь­трат подвергают лиофильному высушиванию и таблетированию. Возможно также получение бактериофага в виде суспензий. Активность бактериофага устанавливают путем титрования на соответствующих, чувствительных к фагу, культурах бактерий, выращенных на плотных или жидких питательных средах, и выражают числом частиц фага, содержащихся в 1 мл суспензии или в одной таблетке.

Назначают бактериофаги с профилактичес­кой и лечебной целью перорально или местно например, орошение раневой поверхности в случае стафилококковой или другой раневой инфекции) длительными курсами. Эффект фа­гопрофилактики и фаголечения — умеренный.

 

14.2.4. Пробиотики

Пробиотики относятся к иммунобиологическим препаратам, содержащим культуру живых непатогенных бактерий — представителей нормальной микрофлоры кишечника человека и предназначенным для коррекции, т. е. нормализации, качественного и количественного состава микрофлоры человека в случае их нарушения, т. е. при дисбактериозах.

Пробиотики применяют как с профилактической, так и с лечебной целью при дисбактериозах различной этиологии: при соматических и инфекционных болезнях, при экологических и профессиональных влияниях на организм и его микрофлору, при вторичных иммунодефи-цитах, при нерациональном питании, которые зачастую сопровождаются нарушением микрофлоры, особенно желудочно-кишечного тракта. Поскольку дисбактериозы широко распространены среди населения, так как полиэтиологичны, пробиотики относятся к числу препаратов массового применения, производятся в нашей стране в больших количествах и ими постоянно снабжается аптечная сеть.

К наиболее распространенным пробиоти-кам относятся «Колибактерин», «Бифидум-бактерин», «Лактобактерин», «Бификол», «Субтилин», в состав которых входят соот­ветственно кишечная палочка, бифидобактерии, лактобактерии, споры субтилис или их комбинации.

Препараты представляют собой лиофильно высушенные живые культуры соответствующих микроорганизмов с добавками стабилизаторов и вкусовых веществ и выпускаются в виде порошков или таблеток. Дозируются пробиотики по числу живых бактериальных клеток в таблетке или в 1 г; одна доза обычно содержит 107-108 живых бактерий.

В настоящее время широкое применение нашли пробиотики в виде молочнокислых продуктов: «Био-кефир», кефир «Бифидок» и другие, содержащие живые бактерии нормальной микрофлоры человека.

Учитывая, что пробиотики содержат живые микробные клетки, они должны храниться в щадящих условиях (определенный темпера­турный режим, отсутствие солнечной радиа­ции т. д.).

Пробиотики назначают перорально дли­тельными курсами (от 1 до 6 месяцев) по 2-3 раза в день и, как правило, в сочетании с дру­гими методами лечения.

 

14.2.5. Иммунобиологические препараты на основе специфических антител

Антитела относятся к числу основных им-мунореагентов, участвующих во многих им­мунологических реакциях, определяющих со­стояние иммунитета организма. Они разнооб­разны по своей структуре и функциям.

В зависимости от природы и свойств анти­генов, к которым они образуются, антитела могут быть антибактериальными, противови­русными, антитоксическими, противоопухо­левыми, антилимфоцитарными, трансплан­тационными, цитотоксическими, рецепторными и т. д. В связи с этим на основе антител создано множество иммунобиологических препаратов, применяемых для профилактики, терапии и диагностики как инфекционных (бактериальных, вирусных, токсинеми-ческих), так и неинфекционных болезней, а также для исследовательских целей в иммунологии и других науках.

К иммунологическим препаратам на основе антител относятся:

  • иммунные сыворотки,
  • иммуноглобулины (цельномолекулярные и доменные),
  • моноклональные антитела,
  • иммунотоксины, иммуноадгезины,
  • абзимы (антитела-ферменты).

 

14.2.5.1. Иммунные сыворотки. Иммуноглобулины

Иммунные лечебные и профилактические сыворотки известны уже более ста лет. Первые иммунные антитоксические противодифте­рийные сыворотки получил Беринг. К насто­ящему времени разработаны и применяются не только антитоксические сыворотки для лечения и профилактики дифтерии, столбняка, газовой гангрены, ботулизма, но и множество противобактериальных (противотифозная, дизентерийная, противочумная и др.), а так­же противовирусных сывороток (гриппозная, коревая, против бешенства и др.).

Иммунные сыворотки получают путем гипе­риммунизации (т. е. многократной интенсив­ной иммунизации) животных (чаще всего ло­шади, ослы, иногда кролики) специфическим антигеном (анатоксином, бактериальными или вирусными культурами и их антигенами) с пос­ледующим, в период максимального антитело-образования, кровопусканием и выделением из крови иммунной сыворотки. Иммунные сы­воротки, полученные от животных, называют гетерогенными, так как они содержат чужерод­ные для человека сывороточные белки.

Для получения гомологичных нечужерод­ных иммунных сывороток используют сы­воротки переболевших людей (коревая, па-ротитная, оспенная сыворотки) или специ­ально иммунизированных людей-доноров (противостолбнячная, противоботулини-ческая и другие сыворотки) либо сыворотки из плацентарной, а также абортной крови, содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакцинации или перенесенного заболевания.

Естественно, что гомологичные сыворотки предпочтительнее гетерологичных.

Поскольку нативные иммунные сыворот­ки содержат в своем составе ненужные бал­ластные белки, например альбумин, из этих сывороток выделяют и подвергают очистке и концентрированию специфические белки — иммуноглобулины.

Для очистки и концентрирования иммуног­лобулинов используют различные физико-химические методы: осаждение спиртом или ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация.

Иногда, а именно для повышения специ­фичности и активности антител, из молеку­лы иммуноглобулина выделяют только анти-генсвязывающий участок (Fab-фрагменты); такие иммуноглобулины получили название доменных антител.

Активность иммунных сывороток и имму­ноглобулинов выражают в антитоксических единицах, в титрах вируснейтрализующей, гемагглютинирующей, преципитирующей, агглютинирующей и т. д. активности, т. е. тем наименьшим количеством антител, которое вызывает видимую или регистрируемую соот­ветствующим способом реакцию с определен­ным количеством специфического антигена.

Так, активность антитоксической проти­востолбнячной сыворотки и соответствую­щего иммуноглобулина выражают в анти­токсических единицах (АЕ) или в между­народных антитоксических единицах (ME), т. е. количеством антитоксина, связывающего 100 Dim или 1000 Dim для белой мыши стол­бнячного токсина. Титр агглютинирующих или преципитирующих сывороток выражают в максимальных разведениях сыворотки, вы­зывающих соответствующие реакции с анти­геном; вируснейтрализующие антитела — в разведениях, нейтрализующих определенное количество вируса при биопробах на культуре клеток, развивающихся куриных эмбрионах (РКЭ) или животных.

Иммунные сыворотки и иммуноглобулины применяют с лечебной и профилактической целью. Особенно эффективно применение сывороточных препаратов для лечения токси-немических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена), а также для ле­чения бактериальных и вирусных инфекций (корь, краснуха, чума, сибирская язва и др.) в комплексе с другими способами лечения. С лечебной целью сывороточные препараты вводят как можно раньше внутримышечно (иногда внутривенно) в больших дозах.

Профилактические дозы сывороточных пре­паратов значительно меньше лечебных, а препараты вводят внутримышечно обычно лицам, имевшим контакт с больным или иным источником инфекции, для создания пассивного иммунитета. При введении сывороточных препаратов иммунитет наступает через несколько часов и сохраняется 2-3 недели после введения гетерологичных и в течение 4-5 недель — гомологичных сывороточных препаратов.

После введения сывороточных препаратов возможны осложнения в виде анафилактического шока и сывороточной болезни. Поэтому перед введением препаратов ставят аллергическую пробу на чувствительность к ним пациента, а вводят их по Безредке.

В некоторых случаях прибегают к пассивно-активной иммунизации, т. е. к одновременному введению сывороточных препаратов и вакцин, в результате чего быстро наступающий, но кратковременный пассивный иммунитет, обусловленный вводимыми антителами, подменяется через 2-3 недели активным иммунитетом, возникающим в ответ на введение вакцины. К пассивно-активной иммунизации прибегают для профилактики столбняка у раненых, при профилактике бешенства и других инфекций.

14.2.5.2. Моноклональные антитела

Как известно, антитела по своей структуре и функциям гетерогенны. Каждый В-лимфоцит (плазмоцит) синтезирует свой класс, подкласс, аллотип иммуноглобулина. Поэтому в ответ на введение антигена в крови появляются поликлональные антитела, т. е. смесь иммуноглобулинов, синтезированных множеством клонов активированных В-лимфоцитов.

Для получения иммуноглобулинов, синтезируемых только одним В-лимфоцитом или полученным от него клоном, т.е. монокло-нального иммуноглобулина, необходимо им­мунный В-лимфоцит (взятый от иммунизированного животного или человека) размно­жить в искусственных условиях (в культуре клеток) и добиться синтеза иммуноглобули­нов. Однако практическое использование та­кого пути нереально, поскольку В-лимфоци-ты не размножаются in vitro. Учитывая это, немецкие ученые Келлер и Мильштейн раз­работали метод получения моноклональных антител с помощью гибридом, т.е. гибрид­ных клеток, образованных путем слияния им­мунного В-лимфоцита с миеломной клеткой. Полученные таким образом гибридомы спо­собны быстро размножаться in vitro в культуре клеток (что унаследовано от миеломной клет­ки) и продуцировать при этом иммуноглобу­лин, характерный для синтеза только взятым для получения гибридомы В-лимфоцитом.

Гибридомы, продуцирующие моноклональ­ные антитела, размножают или в аппаратах, приспособленных для выращивания культур клеток или же вводя их внутрибрюшинно особой линии (асцитным) мышам. В послед­нем случае моноклональные антитела накап­ливаются в асцитной жидкости, в которой размножаются гибридомы. Полученные как тем, так и другим способом моноклональные антитела подвергают очистке, стандартиза­ции и используют для создания на их основе диагностических препаратов.

С лечебной и профилактической целью мо­ноклональные антитела, как правило, не применяют из-за риска введения генетического ма­териала миеломных клеток. Однако они широко используются для создания диагностических препаратов и в исследовательских целях.

14.2.5.3.   Иммунотоксины. Иммуноадгезины

Антитела искусственно можно получить практически к любым структурам микробной, животной или человеческой клетки и тканям, обладающим антигенностью. Например, полу­чены антитела к рецепторам клеток, в том числе иммунокомпетентным, к адгезинам, клеточ­ным компонентам, ферментам, комплементу, белкам крови, гормонам, иммуномодуляторам и т. д. Эти специфические антитела (в основ­ном моноклональные) к отдельным структурам клеток нашли применение в исследовательских работах, в частности для маркировки клеток (например, CD-маркеры В-лимфоцитов), для изучения механизмов взаимодействия клеток в норме и патологии (иммуноадгезины), для адресной доставки лекарственных препаратов и подавления тех или иных биологических про­цессов (иммунотоксины).

Указанные выше антитела пока не находят применения для лечения и профилактики различных болезней.

Изредка находит применение антилимфоцитарная сыворотка для подавления лимфопоэза при некоторых болезнях. Однако применение иммунотоксинов и адгезинов ждет большое будущее.

14.2.5.4.   Абзимы

Абзимы — антитела-ферменты. Это искусственно полученные иммуноглобулины, обладающие специфичностью антител к какому-либо промежуточному продукту биологической реакции, обладающему антигенными свойствами.

Абзимы действуют как ферменты-катализаторы и могут ускорять течение биохимичес­ких реакций в тысячи раз и более. Например, известно, что в сложном процессе свертывания крови и фибронолизисе последовательно участвует множество белков (факторы XII, XI, X, VIII и др.) Если к одному из этих анти­генных белков получить антитела, то, по-видимому, эти антитела, действуя как фермен­ты-катализаторы, будут в состоянии ускорить или замедлить процесс свертывания крови.

14.2.6. Иммуномодуляторы

На функционирование иммунной системы могут оказывать влияние различные факторы и вещества: или с которыми встречается ор­ганизм в повседневной жизни (социальные, экологические, профессиональные факторы), или которые используются целенаправленно для профилактики или лечения заболеваний и патологических состояний, связанных с нарушением иммунного статуса (первичные и вторичные иммунодефициты).

Вещества, оказывающие влияние на функцию иммунной системы, называют иммуномодуляторами. Их принято подразделять на экзогенные и эндогенные.

К экзогенным иммуномодуляторам отно­сится большая группа веществ различной химической природы и происхождения, оказывающих неспецифическое активирующее или супрессивное действие на иммунную систему, но являющихся чужеродными для организма.

Эндогенные иммуномодуляторы представляют собой достаточно большую группу олиго-пептидов, синтезируемых самим организмом, его иммунокомпетентными и другими клетками, и способных активировать иммунную систему путем усиления пролиферации и функции иммунокомпетентных акцессорных клеток.

К экзогенным иммуномодуляторам можно отнести разнообразные адъюванты, природные или полученные синтезом химические вещества, физические воздействия (радиация, климатические факторы), а к эндогенным иммуномодуляторам — регуляторные пептиды: интерлейкины (ИЛ-1—ИЛ-26), интерфероны (α-, β-, у-), миелопептиды (5 пептидов), пептиды тимуса (тактивин, тимозин, тимопоэтин и др.), хемокины, ФНО, КСФ, ТФР. Как те, так и другие иммуномодуляторы могут оказывать на иммунную систему активирующее или супрессивное действие, которые могут быть специфическими и неспецифическими, на­правленными на активацию и подавление от­дельных звеньев в работе иммунной системы.

Так, иммуностимулирующим действием обладают адъюванты: сорбенты, полимеры, полисахариды, ЛПС, комплексы, извлечен­ные из БЦЖ (адъювант Фрейнда) и других бактерий (продигиозан, сальмазан, мурамил-дипептид); многие химические соединения (левамизол, циклоспорин, циметидин), а также иммуноцитокины (интерлейкины, ин­терфероны, пептиды тимуса, миелопептиды, ФНО и др.).

Иммуносупрессивным действием облада­ют все цитостатики, антагонисты пуринов (6-меркаптопурин), аминокислот, фермен­тов, а также кортикостероиды, антилимфоци-тарная сыворотка, моноклональные антитела к рецепторам иммунокомпетентных клеток, облучение (рентгеновские лучи, гамма-излучение и др.).

Иммуномодуляторы нашли широкое применение при первичных и вторичных имму-нодефицитах различного происхождения, при онкологических болезнях, при трансплантации органов и тканей, при лечении иммуно­патологических и аллергических болезней, в иммунопрофилактике и лечении инфек­ционных болезней и т. д. Для этого создано множество препаратов, обладающих иммуно-модулирующем действием. К ним относятся препараты интерферона для парентерального и наружного применения (α-, β-, у-), лейко-ферон, рекомбинантный реаферон, виферон (свечевая форма реаферона с витаминами А и С) и др. На основе интерлейкинов создан ряд препаратов, в основном полученных генно-инженерным способом: интерлейкин-1 бета (бета-лейкин), ИЛ-2, -3, -6 и др. На осно­ве пептидов тимуса, извлеченных из тимуса крупного рогатого скота или полученных ген­но-инженерным способом, созданы препара­ты такативин, тимозин, титулин, тимопоэтин. В последнее время получены из природного сырья (костного мозга), а также рекомбинантные препараты на основе миелопептидов (МП-1, МП-2, МП-3, МП-4).

Из экзогенных иммуномодуляторов следует упомянуть препараты, созданные на основе субстанций, извлеченных из микробных клеток: пирогенал (ЛПС P. aeruginosa), продиги-озан (ЛПС P.prodigiosum), сальмазан (ЛПС, извлеченный из сальмонелл), ликопид (модифицированный мурамилдипептид), рибомунил, который состоит из рибосом клебсиелл, диплококков с примесью мембранных про-теогликанов; ЛПС микобактерий, нуклеонат натрия (натриевая соль низкомолекулярной РНК, выделенной из дрожжей) и др.

Таким образом, медицинская служба располагает большим арсеналом иммуномоду­ляторов, которые могут быть использованы для иммунокоррекции при различных инфек­ционных и неинфекционных болезнях, про­текающих с вовлечением в патологический процесс иммунной системы.

14.2.7. Адаптогены

Эта группа препаратов близко примыкает к иммуномодуляторам. Однако в отличие от последних она обладает, помимо иммуномодулирующего действия, более широким спектром влияния на функционирование различных органов и систем. К адаптогенам относятся сложные химические вещества растительного и животного происхождения, а также искусственно синтезированные или сконструированные из комплекса природ­ных или синтезированных биологически активных веществ. Чаще всего препараты адаптогенов конструируются на основе биологически активных веществ растительного происхождения (фитоадаптогенов) или из гидробионтов, т. е. обитателей морей и океанов. Уже давно известно стимулирую­щее действие женьшеня, элеутерококка, кра­савки, зверобоя, плодов шиповника, семян пальмы Серены и т. д.

Наряду со стимуляцией иммунной системы адаптогены способны вызвать ряд биологических процессов и реакций, способствующих повышению резистентности организма к неблагоприятным воздействиям.

Адаптогены, как правило, применяются с профилактической целью — для предупреждения развития того или иного заболевания или укрепления здоровья, повышения устой­чивости организма к неблагоприятным воз­действиям. Обычно адаптогены назначаются длительными курсами, их принимают как биологически активные пищевые добавки. Разработано множество препаратов адапто­генов. При этом направленность их дейс­твия отличается: одни из них предназначены для профилактики и лечения сердечно-сосу­дистых заболеваний, другие — заболеваний печени, урогенитального тракта, нервной системы, онкологических болезней и т.д. Основным преимуществом адаптогенов, осо­бенно фитоадаптогенов, является их безвред­ность (их можно применять годами), природ­ная сбалансированность в них биологически активных веществ, простота приготовления и применения (экстракты и настои растений, микстура, капсулы, таблетки), экологическая чистота исходного для приготовления адапто­генов сырья.

14.2.8. Диагностические препараты

Для иммунодиагностики инфекционных, а также неинфекционных болезней, связанных со изменением функции иммунитета, для оценки иммунного статуса при выявлении влияния на организм неблагоприятных фак­торов разработано и используется в медицинской практике множество диагностических препаратов и систем. Механизм действия диагностических препаратов и систем основан на гуморальных и клеточных реакциях, выявляемых в опытах in vitro и in vivo. Комплекс этих реакций очень разнообразен и включает:

  • реакции антиген-антитело на основе специфических природных антигенов и антител или же рекомбинантных белков, специфических пептидов и моноклональных антител;
  • генетическое титрование на основе амплификации и молекулярной гибридизации (ПЦР);
  • клеточные реакции по определению количественного и качественного состояния иммунокомпетентных клеток (Т- и В-лимфоцитов, фагоцитирующих клеток);
  • определение факторов естественной резистентности (комплемента, интерферона, лизоцима и других защитных белков);
  • определение иммуноцитокинов и других биологически активных веществ, принимаю­щих участие в регуляции иммунитета;
  • кожные пробы и реакции, например ал­лергические.

Техника и технические средства для пос­тановки упомянутых реакций весьма разно­образны, начиная от использования элемен­тарных проб в пробирках или на предметном стекле и кончая сложными автоматизирован­ными и компьютеризированными методами.

Успешно развиваются биосенсорные тест-системы. Принцип работы биосенсоров ос­нован на регистрации с помощью детекторов физических (опалесценция, агглютинация, тепловое и другие виды излучения) и химичес­ких (образование новых продуктов и соедине­ний) эффектов, возникающих при осущест­влении специфических реакций иммунитета. Например, если реакция антиген-антитело протекает с выделением тепла, то ее можно регистрировать по тепловому эффекту; если при действии фермента на детектируемый субстрат выделяется С02, то по количеству углекислоты можно определить количество субстрата и т. д.

Для диагностики инфекционных, а также не­инфекционных болезней (аллергий, иммунопатологических, опухолевых процессов, реакций отторжения трансплантата, толерантности и т. д.) разработаны сотни диагностических пре­паратов и систем. С их помощью диагности­руют инфекции (чума, СПИД, сибирская язва, туляремия, вирусные гепатиты, брюшной тиф, дифтерия и др.), пищевые, профессиональные и другие виды аллергий, локализацию злокачественных опухолей (рак печени, легких, прямой кишки и др.); иммунные взаимоотношения матери и плода, беременность; совместимость органов и тканей при пересадках, иммунодефицитные состояния; влияние на организм и его иммунную систему экологических, социальных и других факторов.

Чувствительность, специфичность и инфор­мативность диагностических препаратов, осно­ванных на иммунологических принципах, как правило, выше, чем других методов диагнос­тики. Применение моноклональных антител, очищенных и специфических антигенов, со­вершенствование техники регистрации реак­ций еще более повысили специфичность и ин­формативность диагностических препаратов.

Сайттағы материалды алғыңыз келе ме?

ОСЫНДА БАСЫҢЫЗ

Бұл терезе 3 рет ашылған соң кетеді. Қолайсыздық үшін кешірім сұраймыз!