Алкалоиды. Антибиотики

Алкалоиды. Антибиотики.

Алкало́иды

Алкало́иды (от позднелат. alkali — щелочь или араб. al-qali — растительная зола и др.-греч. εἶδος — вид, облик) — группа азотсодержащих органических соединений природного происхождения (чаще всего растительного), преимущественно гетероциклических, большинство из которых обладает свойствами слабого основания; к ним также причисляются некоторые биогенетически связанные с основными алкалоидами нейтральные и даже слабокислотные соединения. Аминокислоты, нуклеотиды, аминосахара и их полимеры к алкалоидам не относятся. Иногда алкалоидами называются и синтетические соединения аналогичного строения.

Первый изолированный алкалоид — морфин — был выделен в 1804 году из опийного мака (Papaver somniferum)

Помимо углерода, водорода и азота в молекулы алкалоидов могут входить атомы серы, реже — хлора, брома или фосфора. Многие алкалоиды обладают выраженной физиологической активностью К алкалоидам относятся, например, такие вещества, как морфин, кофеин, кокаин, стрихнин, хинин и никотин. Многие алкалоиды в малых дозах оказывают лечебное действие, а в больших — ядовиты. Алкалоиды различны по своему физиологическому действию: одни из них угнетают или возбуждают нервную систему, другие парализуют нервные окончания, расширяют или сужают сосуды, третьи обладают обезболивающим действием и т. д.

Граница между алкалоидами и другими азотсодержащими природными соединениями различными авторами проводится по-разному. Иногда считается, что природные соединения, содержащие азот в экзоциклической позиции (мескалин, серотонин, дофамин и др.), относятся к биогенным аминам, но не к алкалоидам. Другие же авторы, напротив, считают алкалоиды частным случаем аминов или причисляют биогенные амины к алкалоидам.

По сравнению с большинством других классов природных соединений, класс алкалоидов отличается большим структурным многообразием. Единой классификации алкалоидов не существует.

Исторически первые классификации алкалоидов объединяли алкалоиды в группы по признаку происхождения из общего природного источника, например, из растений одного рода. Это было оправдано недостаточностью знаний о химическом строении алкалоидов. В настоящее время такая классификация считается во многом устаревшей.

Более современные классификации используют объединение алкалоидов в классы по признаку сходства строений углеродного скелета (индольные, изохинолиновые, пиридиновые алкалоиды и т. п.) или по биогенетическим предшественникам (орнитин, лизин, тирозин, триптофан и т. п.). Однако при использовании таких схем приходится идти на компромиссы в пограничных случаях: так, никотин содержит как пиридиновое ядро, происходящее от никотиновой кислоты, так и пирролидиновое ядро от орнитина, и поэтому может быть отнесён к обоим классам.

Буфотенин, яд жаб, содержит индольное ядро и синтезируется в живых организмах из аминокислоты триптофана

Молекула никотина включает в себя как пиридиновый цикл (слева), так и пирролидиновый (справа)

Алкалоиды часто делят на следующие большие группы:

1.   Алкалоиды с атомом азота в гетероцикле, биогенетическими предшественниками которых являются аминокислоты. Называются также истинными алкалоидами. Примерами истинных алкалоидов являются атропин, никотин, морфин. К этой группе относят также некоторые алкалоиды, содержащие, кроме азотистых гетероциклов, терпеноидные фрагменты (как эвонин) или имеющие пептидную структуру (как эрготамин). Пиперидиновые алкалоиды кониин и коницеин часто относят также к этой группе, но их предшественники не являются аминокислотами.

2.   Алкалоиды с атомом азота в боковой цепи, биогенетическими предшественниками которых являются аминокислоты. Называются также протоалкалоидами. Примерами являются мескалин, адреналин и эфедрин.

3.   Полиаминные алкалоиды (производные путресцина, спермидина и спермина).

4.   Пептидные (циклопептидные) алкалоиды.

5.   Псевдоалкалоиды — соединения, похожие на алкалоиды, биогенетическими предшественниками которых не являются аминокислоты. К этой группе относятся, в первую очередь, терпеноидные и стероидные алкалоиды. Пуриновые алкалоиды, такие как кофеин, теобромин и теофиллин, иногда относят к псевдоалкалоидам в связи со спецификой их биосинтеза. Некоторые авторы относят к псевдоалкалоидам такие соединения, как эфедрин и катинон, которые, хотя и происходят от аминокислоты фенилаланина, но атом азота приобретают не от неё, а в результате реакции трансаминации.

Некоторые соединения, относимые по аналогии к тому или иному структурному классу, не имеют соответствующего элемента углеродного скелета. Так, галантамин и гомоапорфины не содержат изохинолинового ядра, но обычно относятся к изохинолиновым алкалоидам.

Свойства

Алкалоиды, молекулы которых содержат атомы кислорода (что справедливо для подавляющего большинства алкалоидов) при стандартных условиях, как правило, представляют собой бесцветные кристаллы. Алкалоиды, молекулы которых не содержат атомов кислорода, чаще всего являются летучими бесцветными маслянистыми жидкостями (как никотин или кониин). Некоторые алкалоиды не являются бесцветными: так, берберин жёлтый, сангвинарин оранжевый.

Большинство алкалоидов обладает свойствами слабых оснований, но некоторые из них амфотерны (как теобромин и теофиллин).

Как правило, алкалоиды плохо растворимы в воде, но хорошо растворимы во многих органических растворителях (диэтиловом эфире, хлороформе и 1,2-дихлорэтане). Исключением является, например, кофеин, хорошо растворимый в кипящей воде. При взаимодействии с кислотами алкалоиды образуют соли различной степени прочности. Соли алкалоидов, как правило, хорошо растворимы в воде и спиртах и плохо растворимы в большинстве органических растворителей, хотя известны соли, плохо растворимые в воде (сульфат хинина) и хорошо растворимые в органических растворителях (гидробромид скополамина).

Большинство алкалоидов имеет горький вкус. Предполагается, что таким образом естественный отбор защитил животных от вырабатываемых растениями алкалоидов, многие из которых сильно ядовиты.

Биогенетическими предшественниками большинства алкалоидов являются аминокислоты: орнитин, лизин, фенилаланин, тирозин, триптофан, гистидин, аспарагиновая кислота и антраниловая кислота. Все эти аминокислоты, кроме антраниловой кислоты, являются протеиногенными. Никотиновая кислота может быть синтезирована из триптофана или аспарагиновой кислоты. Пути биосинтеза алкалоидов не менее разнообразны, чем их структуры, и их невозможно объединить в общую схему. Тем не менее, существует несколько характерных реакций, участвующих в биосинтезе различных классов алкалоидов:

·       образование оснований Шиффа,

·       реакция Манниха,

Чилибуха, семена которой богаты стрихнином и бруцином

Значение алкалоидов для живых организмов, их синтезирующих, до сих пор изучено недостаточно. Первоначально предполагалось, что алкалоиды являются конечными продуктами метаболизма азота у растений, как мочевина у млекопитающих. Позднее было показано, что во многих растениях содержание алкалоидов может как увеличиваться, так и уменьшаться с течением времени; таким образом, эта гипотеза была опровергнута.

Большинство известных функций алкалоидов относятся к защите растений от внешних воздействий. Так, например, апорфиновый алкалоид лириоденин, вырабатываемый лириодендроном тюльпановым, защищает растение от паразитических грибов. Кроме того, содержание алкалоидов в растении препятствует их поеданию насекомыми и растительноядными хордовыми, хотя животные, в свою очередь, выработали способы противодействия токсичному действию алкалоидов; некоторые из них даже используют алкалоиды в собственном метаболизме.

Алкалоиды имеют и эндогенное значение. Такие вещества, как серотонин, дофамин и гистамин, иногда также относимые к алкалоидам, являются важными нейромедиаторами у животных. Известна также роль алкалоидов в регулировке роста растений.

Медицинское применение растений-алкалоидоносов имеет давнюю историю. В XIX веке, когда первые алкалоиды были получены в чистом виде, они сразу нашли своё применение в клинической практике в качестве лекарственного средства. Многие алкалоиды до сих пор применяются в медицине (чаще в виде солей).

Антибио́тики

Антибио́тики (от др.-греч. ἀντί — против + βίος — жизнь) — вещества природного или полусинтетического происхождения, подавляющие рост живых клеток, чаще всего прокариотических или простейших.

Антибиотики природного происхождения чаще всего продуцируются актиномицетами, реже — немицелиальными бактериями.

Тест на чувствительности бактерий к разным антибиотикам. На поверхность чашки Петри, на которой растут бактерии, положены диски, пропитанные разными антибиотиками. Прозрачная зона вокруг диска — рост бактерий подавлен действием антибиотика.

Некоторые антибиотики оказывают сильное подавляющее действие на рост и размножение бактерий и при этом относительно мало повреждают или вовсе не повреждают клетки макроорганизма, и поэтому применяются в качестве лекарственных средств.

Некоторые антибиотики используются в качестве цитостатических (противоопухолевых) препаратов при лечении онкологических заболеваний.

Антибиотики обычно не воздействуют на вирусы и поэтому бесполезны при лечении заболеваний, вызываемых вирусами (например, грипп, гепатиты A, B, C, ветряная оспа, герпес, краснуха, корь). Однако ряд антибиотиков, в первую очередь тетрациклины, действуют также и на крупные вирусы.

Огромное разнообразие антибиотиков и видов их воздействия на организм человека явилось причиной классифицирования и разделения антибиотиков на группы. По характеру воздействия на бактериальную клетку антибиотики можно разделить на две группы:

·       бактериостатические (бактерии остаются живы, но не в состоянии размножаться),

·       бактерицидные (бактерии погибают, а затем выводятся из организма).

Классификация по химической структуре, которую широко используют в медицинской среде, состоит из следующих групп:

·       Бета-лактамные антибиотики, делящиеся на две подгруппы:

·       Пенициллины — вырабатываются колониями плесневого грибка Penicillinum;

·       Цефалоспорины — обладают схожей структурой с пенициллинами. Используются по отношению к пенициллинустойчивым бактериям.

·       Макролиды — антибиотики со сложной циклической структурой. Действие — бактериостатическое.

·       Тетрациклины — используются для лечения инфекций дыхательных и мочевыводящих путей, лечения тяжёлых инфекций типа сибирской язвы, туляремии, бруцеллёза. Действие — бактериостатическое.

·       Аминогликозиды — обладают высокой токсичностью. Используются для лечения тяжёлых инфекций типа заражения крови или перитонитов. Действие — бактерицидное.

·       Левомицетины — Использование ограничено по причине повышенной опасности серьёзных осложнений — поражении костного мозга, вырабатывающего клетки крови. Действие — бактериостатическое.

·       Гликопептидные антибиотики нарушают синтез клеточной стенки бактерий. Оказывают бактерицидное действие, однако в отношении энтерококков, некоторых стрептококков и стафилококков действуют бактериостатически.

·       Линкозамиды оказывают бактериостатическое действие, которое обусловлено ингибированием синтеза белка рибосомами. В высоких концентрациях в отношении высокочувствительных микроорганизмов могут проявлять бактерицидный эффект.

·       Противотуберкулёзные препараты — Изониазид, Фтивазид, Салюзид, Метазид, Этионамид, Протионамид.

·       Антибиотики разных групп — Рифамицин, Ристомицина сульфат, Фузидин-натрий, Полимиксина M сульфат, Полимиксина B сульфат, Грамицидин, Гелиомицин.

·       Противогрибковые антибиотики — разрушают мембрану клеток грибков и вызывают их гибель. Действие — литическое. Постепенно вытесняются высокоэффективными синтетическими противогрибковыми препаратами.

·       Противолепрозные препараты — Диафенилсульфон, Солюсульфон, Диуцифон.

Бета-лактамные антибиотики
Бе́та-лакта́мные антибио́тики (β-лактамные антибиотики, β-лактамы) — группа антибиотиков, которые объединяет наличие в структуре β-лактамного кольца. К бета-лактамам относятся подгруппы пенициллинов, цефалоспоринов, карбапенемов и монобактамов. Сходство химической структуры предопределяет одинаковый механизм действия всех β-лактамов (нарушение синтеза клеточной стенки бактерий), а также перекрёстную аллергию к ним у некоторых пациентов.

Пенициллины
Пеницилли́ны — антимикробные препараты, относящиеся к классу β-лактамных антибиотиков. Родоначальником пенициллинов является бензилпенициллин (пенициллин G, или просто пенициллин), применяющийся в клинической практике с начала 1940-х годов.

Цефалоспорины
Це́фалоспори́ны (англ. cephalosporins) — это класс β-лактамных антибиотиков, в основе химической структуры которых лежит 7-аминоцефалоспорановая кислота (7-АЦК). Основными особенностями цефалоспоринов по сравнению с пенициллинами являются их большая резистентность по отношению к β-лактамазам — ферментам, вырабатываемым микроорганизмами. Как оказалось, первые антибиотики — цефалоспорины, имея высокую антибактериальную активность, полной устойчивостью к β-лактамазам не обладают. Будучи резистентными в отношении плазмидных лактамаз, они разрушаются хромосомными лактамазами, которые вырабатываются грамотрицательными бактериями. Для повышения устойчивости цефалоспоринов, расширения спектра антимикробного действия, улучшения фармакокинетических параметров были синтезированы их многочисленные полусинтетические производные.

Карбапенемы
Карбапенемы (англ. carbapenems) — класс β-лактамных антибиотиков, с широким спектром действий, имеющие структуру, которая обусловливает их высокую устойчивость к бета-лактамазам. Не устойчивы против нового вида бета-лактамаз NDM1.

Макролиды
Макроли́ды — группа лекарственных средств, большей частью антибиотиков, основой химической структуры которых является макроциклическое 14- или 16-членное лактонное кольцо, к которому присоединены один или несколько углеводных остатков. Макролиды относятся к классу поликетидов, соединениям естественного происхождения. Макролиды относятся к числу наименее токсичных антибиотиков.

Также к макролидам относят:

·       азалиды, представляющие собой 15-членную макроциклическую структуру, получаемую путём включения атома азота в 14-членное лактонное кольцо между 9 и 10 атомами углерода;

·       кетолиды — 14-членные макролиды, у которых к лактонному кольцу при 3 атоме углерода присоединена кетогруппа.

Кроме этого, в группу макролидов номинально входит относящийся к иммунодепрессантам препарат такролимус, химическую структуру которого составляет 23-членное лактонное кольцо.

Тетрациклины
Тетрацикли́ны (англ. tetracyclines)— группа антибиотиков, относящихся к классу поликетидов, близких по химическому строению и биологическим свойствам. Представители данного семейства характеризуются общим спектром и механизмом антимикробного действия, полной перекрёстной устойчивостью, близкими фармакологическими характеристиками. Различия касаются некоторых физико-химических свойств, степени антибактериального эффекта, особенностей всасывания, распределения, метаболизма в макроорганизме и переносимости.

Аминогликозиды
Ами́ногликози́ды — группа антибиотиков, общим в химическом строении которых является наличие в молекуле аминосахара, соединённого гликозидной связью с аминоциклическим кольцом. По химическому строению к аминогликозидам близок также спектиномицин, аминоциклитоловый антибиотик. Основное клиническое значение аминогликозидов заключается в их активности в отношении аэробных грамотрицательных бактерий.

Линкозамиды
Ли́нкозами́ды (син.: линкосамиды) — группа антибиотиков, в которую входят природный антибиотик линкомицин и его полусинтетический аналог клиндамицин. Обладают бактериостатическими или бактерицидными свойствами в зависимости от концентрации в организме и чувствительности микроорганизмов. Действие обусловлено подавлением в бактериальных клетках синтеза белка путём связывания 30S-субъединицы рибосомальной мембраны. Линкозамиды устойчивы к действию соляной кислоты желудочного сока. После приема внутрь быстро всасываются. Используется при инфекциях, вызванных грамположительными кокками (преимущественно в качестве препаратов второго ряда) и неспорообразующей анаэробной флорой. Их обычно сочетают с антибиотиками, влияющими на грамотрицательную флору (например, аминогликозидами).

Хлорамфеникол
Хлорамфеникол (левомицетин) — антибиотик широкого спектра действия. Бесцветные кристаллы очень горького вкуса. Применяют для лечения брюшного тифа, дизентерии и других заболеваний. Токсичен. Регистрационный номер CAS: 56-75-7. Рацемическая форма — синтомицин.

Гликопептидные антибиотики
Гликопептидные антибиотики — класс антибиотиков, состоит из гликозилированных циклических или полициклических нерибосомных пептидов. Этот класс антибиотиков ингибирует синтез клеточных стенок у чувствительных микроорганизмов, ингибируя синтез пептидогликанов.

Полимиксины
Полимикси́ны — группа бактерицидных антибиотиков, обладающих узким спектром активности против грамотрицательной флоры. Основное клиническое значение имеет активность полимиксинов в отношении P. aeruginosa. По химической природе это полиеновые соединения, включающие остатки полипептидов. В обычных дозах препараты этой группы действуют бактериостатически, в высоких концентрациях — оказывают бактерицидное действие. Из препаратов в основном применяются полимиксин В и полимиксин М. Обладают выраженной нефро- и нейротоксичностью.

Сульфаниламидные антибактериальные препараты
Сульфани́лами́ды (лат. sulfanilamide) — это группа химических веществ, производных пара-аминобензолсульфамида — амида сульфаниловой кислоты (пара-аминобензосульфокислоты). Многие из этих веществ с середины двадцатого века употребляются в качестве антибактериальных препаратов. пара-Аминобензолсульфамид — простейшее соединение класса — также называется белым стрептоцидом и применяется в медицине до сих пор. Несколько более сложный по структуре сульфаниламид пронтозил (красный стрептоцид) был первым препаратом этой группы и вообще первым в мире синтетическим антибактериальным препаратом.

Хинолоны
Хиноло́ны — группа антибактериальных препаратов, также включающая фторхинолоны. Первые препараты этой группы, прежде всего налидиксовая кислота, в течение многих лет применялись только при инфекциях мочевыводящих путей. Но после получения фторхинолонов стало очевидно, что они могут иметь большое значение и при лечении системных бактериальных инфекций. В последние годы это наиболее динамично развивающаяся группа антибиотиков.

Фто́рхиноло́ны (англ. fluoroquinolones) — группа лекарственных веществ, обладающих выраженной противомикробной активностью, широко применяющихся в медицине в качестве антибиотиков широкого спектра действия. По широте спектра противомикробного действия, активности и показаниям к применению они действительно близки к антибиотикам, но отличаются от них по химической структуре и происхождению. (Антибиотики являются продуктами природного происхождения либо близкими синтетическими аналогами таковых, в то время, как фторхинолоны не имеют природного аналога). Фторхинолоны подразделяют на препараты первого (пефлоксацин, офлоксацин, ципрофлоксацин, ломефлоксацин, норфлоксацин) и второго поколения (левофлоксацин, спарфлоксацин, моксифлоксацин)[5]. Из препаратов группы фторхинолонов ломефлоксацин, офлоксацин, ципрофлоксацин, левофлоксацин, спарфлоксацин и моксифлоксацин входят в Перечень жизненно необходимых и важнейших лекарственных препаратов.

Қажетті материалды таппадың ба? Онда KazMedic авторларына тапсырыс бер

Алкалоиды. Антибиотики

error: Материал көшіруге болмайды!