Молекулярно-генетические аспекты размножения

Молекулярно-генетические аспекты размножения

Введение Способность размножаться, т. е. производить новое поколение особей того же вида, – одна из основных особенностей живых организмов. В процессе размножения происходит передача генетического материала от родительского поколения следующему поколению, что обеспечивает воспроизведение признаков не только данного вида, но конкретных родительских особей. Для вида смысл размножения состоит в замещении тех его представителей, которые гибнут, что обеспечивает непрерывность существования вида; кроме того, при подходящих условиях размножение позволяет увеличить общую численность вида.

Каждая новая особь, прежде чем достигнуть стадии, на которой она будет способна к размножению, должна пройти ряд стадий роста и развития. Некоторые особи погибают, не достигнув репродуктивной стадии (или половозрелости) в результате уничтожения хищниками, болезней и разного рода случайных событий; поэтому вид может сохраниться лишь при условии, что каждое поколение будет производить больше потомков, чем было родительских особей, принимавших участие в размножении. Численность популяций колеблется в зависимости от баланса между размножением и вымиранием особей. Существует ряд различных стратегий размножения, каждая из которых имеет определенные преимущества и недостатки;

1.Половое и бесполое размножение и их виды.

Существуют два основных типа размножения – бесполое и половое. Бесполое размножение происходит без образования гамет, и в нем участвует лишь один организм. При бесполом размножении обычно образуются идентичные потомки, а единственным источником генетической изменчивости служат случайные мутации.

Генетическая изменчивость выгодна виду, так как она поставляет «сырье» для естественного отбора, а значит, и для эволюции. Потомки, оказавшиеся наиболее приспособленными к среде, будут обладать преимуществом в конкуренции с другими представителями того же вида и будут иметь больше шансов выжить и передать свои гены следующему поколению. Благодаря этому виды способны изменяться, т. е. возможен процесс видообразования. Повышение изменчивости может быть достигнуто путем смешения генов двух разных особей – процесса, называемого генетической рекомбинацией и составляющего важную особенность полового размножения; в примитивной форме генетическая рекомбинация встречается уже у некоторых бактерий.

Бесполое размножение

При бесполом размножении потомки происходят от одного организма, без слияния гамет. Мейоз в процессе бесполого размножения не участвует (если не говорить о растительных организмах с чередованием поколений), и потомки идентичны родительской особи. Идентичное потомство, происходящее от одной родительской особи, называют клоном. Члены одного клона могут быть генетически различными только в случае возникновения случайной мутации. Высшие животные не способны к бесполому размножению, однако в последнее время было сделано несколько успешных попыток клонировать некоторые виды искусственным образом; мы их рассмотрим в дальнейшем.

Деление

Делением размножаются одноклеточные организмы: каждая особь делится на две или большее число дочерних клеток, идентичных родительской клетке. Делению клетки предшествует репликация ДНК, а у эукариот – также деление ядра. В большинстве случаев происходит бинарное деление, при котором образуются две идентичные дочерние клетки. Так делятся бактерии, многие простейшие, такие как амеба или парамеция, и некоторые одноклеточные водоросли, например эвглена. При подходящих условиях это приводит к быстрому росту популяции. Множественное деление, при котором вслед за рядом повторных делении клеточного ядра происходит деление самой клетки на множество дочерних клеток, наблюдается у споровиков – группы простейших, к которой относится, в частности, возбудитель малярии. Стадия, на которой происходит множественное деление, называется шизонтом, а сам этот процесс – шизогонией. У возбудителя малярии шизогония непосредственно следует за заражением хозяина, когда паразит проникает в печень. При этом получается сразу около тысячи дочерних клеток, каждая из которых способна инвазировать эритроцит и произвести путем шизогонии еще 24 дочерние клетки. Такая высокая плодовитость компенсирует большие потери из-за трудностей успешной передачи паразита от одного хозяина другому, а именно от человека организму-переносчику, т. е. малярийному комару, и в обратном направлении.

Образование спор (споруляция)

Спора-это одноклеточная репродуктивная единица обычно микроскопических размеров, состоящая из небольшого количества цитоплазмы и ядра. Образование спор наблюдается у бактерий, простейших, у представителей всех групп зеленых растений и всех групп грибов. Споры могут быть различными по своему типу и функции и часто образуются в специальных структурах.

Нередко споры образуются в больших количествах и имеют ничтожный вес, что облегчает их распространение ветром, а также животными, главным образом насекомыми. Вследствие малых размеров спора обычно содержит лишь минимальные запасы питательных веществ; из-за того что многие споры не попадают в подходящее место для прорастания, потери спор очень велики. Главное достоинство таких спор-возможность быстрого размножения и расселения видов, в особенности грибов.

Споры бактерий служат, строго говоря, не для размножения, а для того, чтобы выжить при неблагоприятных условиях, поскольку каждая бактерия образует только одну спору. Бактериальные споры относятся к числу наиболее устойчивых: так, например, они нередко выдерживают обработку сильными дезинфицирующими веществами и кипячение в воде.

Почкование

Почкованием называют одну из форм бесполого размножения, при которой новая особь образуется в виде выроста (почки) на теле родительской особи, а затем отделяется от нее, превращаясь в самостоятельный организм, совершенно идентичный родительскому. Почкование встречается в разных группах организмов, особенно у кишечнополостных, например у гидры (рис. 1), и у одноклеточных грибов, таких как дрожжи. В последнем случае почкование отличается от деления (которое тоже наблюдается у дрожжей) тем, что две образующиеся части имеют разные размеры.

 Размножение фрагментами (фрагментация)

Фрагментацией называют разделение особи на две или несколько частей, каждая из которых растет и образует новую особь. Фрагментация происходит, например, у нитчатых водорослей, таких как спирогира. Нить спирогиры может разорваться на две части в любом месте.

Половое размножение.

При половом размножении потомство получается в результате слияния генетического материала гаплоидных ядер. Обычно эти ядра содержатся в специализированных половых клетках – гаметах; при оплодотворении гаметы сливаются, образуя диплоидную зиготу, из которой в процессе развития получается зрелый организм. Гаметы гаплоидны – они содержат один набор хромосом, полученный в результате мейоза; они служат связующим звеном между данным поколением и следующим (при половом размножении цветковых растений сливаются не клетки, а ядра, но обычно эти ядра тоже называют гаметами.)

Мейоз – важный этап жизненных циклов, включающих половое размножение, так как он ведет к уменьшению количества генетического материала вдвое. Благодаря этому в ряду поколений, размножающихся половым путем, это количество остается постоянным, хотя при оплодотворении оно каждый раз удваивается. Во время мейоза в результате случайного расхождения хромосом (независимое распределение) и обмена генетическим материалом между гомологичными хромосомами (кроссинговер) возникают новые комбинации генов, попавших в одну гамету, и такая перетасовка повышает генетическое разнообразие. Слияние содержащихся в гаметах гаплоидных ядер называют оплодотворением или сингамией; оно приводит к образованию диплоидной зиготы, т. е. клетки, содержащей по одному хромосомному набору от каждого из родителей. Это объединение в зиготе двух наборов хромосом (генетическая рекомбинация) представляет собой генетическую основу внутривидовой изменчивости. Зигота растет и развивается в зрелый организм следующего поколения. Таким образом, при половом размножении в жизненном цикле происходит чередование диплоидной и гаплоидной фаз, причем у разных организмов эти фазы принимают различные формы.

Гаметы обычно бывают двух типов – мужские и женские, но некоторые примитивные организмы производят гаметы только одного типа. У организмов, образующих гаметы двух типов, их могут производить соответственно мужские и женские родительские особи, а может быть и так, что у одной и той же особи имеются и мужские, и женские половые органы. Виды, у которых существуют отдельные мужские и женские особи, называются раздельнополыми; таковы большинство животных и человек. Среди цветковых растений тоже есть раздельнополые виды; если у однодомных видов мужские и женские цветки образуются на одном и том же растении, как, например, у огурца и лещины, то у двудомных одни растения несут только мужские, а другие – только женские цветки, как у остролиста или у тиса.

Гермафродитизм

Виды, у которых одна и та же особь способна производить и мужские, и женские гаметы, называют гермафродитными или двуполыми. К их числу относятся многие простейшие, в том числе парамеция, некоторые кишечнополостные, плоские черви, например солитер, олигохеты, например дождевой червь, ракообразные, например морской желудь, такие моллюски, как улитка, некоторые рыбы и ящерицы, а также большинство цветковых растений. Гермафродитизм считается самой примитивной формой полового размножения и свойствен многим примитивным организмам. Он представляет собой приспособление к сидячему, малоподвижному или паразитическому образу жизни. Одно из преимуществ гермафродитизма состоит в том, что он делает возможным самооплодотворение, а это весьма существенно для некоторых эндопаразитов, таких как солитер, ведущих одиночное существование. Однако у большинства гермафродитных видов в оплодотворении участвуют гаметы, происходящие от разных особей, и у них имеются многочисленные генетические, морфологические и физиологические адаптации, препятствующие самооплодотворению и благоприятствующие перекрестному оплодотворению. Например, у многих простейших самооплодотворение предотвращается генетической несовместимостью, у многих цветковых растений – строением андроцея и гинецея, а у многих животных-тем, что яйца и спермии образуются у одной и той же особи в разное время.

Партеногенез

Партеногенез – одна из модификаций полового размножения, при которой женская гамета развивается в новую особь без оплодотворения мужской гаметой. Партеногенетическое размножение встречается как в царстве животных, так и в царстве растений, и преимущество его состоит в том, что в некоторых случаях оно повышает скорость размножения.

Существует два вида партеногенеза – гаплоидный и диплоидный, в зависимости от числа хромосом в женской гамете. У многих насекомых, в том числе у муравьев, пчел и ос, в результате гаплоидного партеногенеза в пределах данного сообщества возникают различные касты организмов. У этих видов происходит мейоз и образуются гаплоидные гаметы. Некоторые яйцеклетки оплодотворяются, и из них развиваются диплоидные самки, тогда как из неоплодотворенных яйцеклеток развиваются фертильные гаплоидные самцы. Например, у медоносной пчелы матка откладывает оплодотворенные яйца (2n = 32), которые, развиваясь, дают самок (маток или рабочих особей), и неоплодотворенные яйца (n = 16), которые дают самцов (трутней), производящих спермии путем митоза, а не мейоза. Развитие особей этих трех типов у медоносной пчелы схематически представлено на рис. 4. Такой механизм размножения у общественных насекомых имеет адаптивное значение, так как позволяет регулировать численность потомков каждого типа.

2.Гаметогенез

Под гаметогенезом подразумевают процесс формирования половых клеток – яйцеклеток и сперматозоидов.

Гаметогенез подразделяется на ряд стадий:

Первая из них – стадия размножения. Делящиеся клетки, которые впоследствии превратятся в гаметы, называются сперматогониями и овогониями. Эти клетки вступают в последовательное митотическое деление, в результате чего их количество резко возрастает. Сперматогонии делятся на протяжении всего жизненного цикла мужской особи. Деление овогониев приурочено в основном к периоду эмбриогенеза.

У человека в развивающемся организме будущей женской особи овогенез активно протекает в яичниках в периоды со второго по пятый. К седьмому месяцу беременности большинство овоцитов уже вступает в стадию профазы I мейоза. Поскольку сперматогонии и овоциты в период размножения делятся митотически, то они сохраняют диплоидный хромосомный набор. В процессе цикла клетки хромосома представлена либо однонитчатой структурой (после очередного митотического деления и до завершения периода интерфазы), либо двунитчатой (постсинтетический период).

Если в гаплоидном наборе за n принять число хромосом, а за c – количество нитей в хромосоме, то генетическая формула сперматогониев и овогониев в период размножения будет выглядеть как 2n2c, а после окончания синтетического периода – как 2n4c.

Второй период называется стадией роста. На этом этапе происходит рост мужских и женских половых клеток и их превращение в сперматоциты и овоциты первого порядка. Овоциты, в соответствии с будущей ролью донора цитоплазмы, значительно превосходят по размерам сперматоциты. Одна часть накопленных веществ овоцита представляет собой материал будущего желтка, т.е. запаса питательных веществ, другая связана с последующим делением. На стадии роста происходит репликация нитей ДНК, т.е. восстановление ее двунитчатой структуры. Таким образом, генетическая формула сперматоцитов и овоцитов первого порядка имеет вид 2n4c.

Третий период называется стадией созревания. Центральное событие стадии созревания – редукция числа хромосом и эквационное деление. Оба события вместе и составляют мейоз. После первого (редукционного) деления образуются однохромосомные сперматоциты и овоциты второго порядка (генетическая формула n2c); число нитей ДНК в хромосоме равно двум. Эквационное деление приводит к уменьшению числа ДНК в одной хромосоме вдвое (генетическая формула nc). В результате мейотического деления один сперматоцит первого порядка дает четыре гаплоидные сперматиды, в то время как овоцит первого порядка – только одну полноценную яйцеклетку. В этом и состоит принципиальное отличие хода овогенеза от сперматогенеза.

Наряду с яйцеклеткой формируются три редукционных тельца, которые не участвуют в размножении. Благодаря редукции числа клеток яйцеклетка имеет максимальное количество желтка – питательного материала будущей зиготы. Сперматиды вступают в следующую фазу – стадию формирования. Центральным событием стадии формирования является суперспирализация хромосом, приобретение ими четвертичной структуры и, как следствие, полная химическая инертность. Пластинчатый комплекс перемещается к одному из полюсов ядра, формируя акросомный аппарат.

Перед оплодотворением при сближении гамет он выделяет ферменты, разрушающие яйцевые оболочки. На противоположный полюс перемещаются центриоли. Одна из них дает начало жгутику, у основания которого видна одна-единственная гигантская митохондрия. На этом этапе стадии формирования практически вся цитоплазма сперматиды отторгается, в результате чего большую часть головки сперматиды занимает ядро. Стадию формирования завершает образование зрелого, готового к оплодотворению сперматозоида.

3.Овогенез

Фазы овогенеза сопоставимы с таковыми при сперматогенезе. В этом процессе также имеется период размножения, когда интенсивно делятся овогонии – мелкие клетки с относительно крупным ядром и небольшим количеством цитоплазмы. У млекопитающих и человека этот период заканчивается еще до рождения. Сформировавшиеся к этому времени овоциты первого порядка сохраняются далее без изменений многие годы. С наступлением половой зрелости периодически отдельные овоциты вступают в период роста. Овоциты увеличиваются, в них накапливаются желток, жир, пигменты. В цитоплазме клетки в ее органоидах и мембранах происходят сложные морфологические биохимические преобразования. Каждый овоцит окружается мелкими фолликулярными клетками, обеспечивающими его питание.

Далее наступает период созревания, в процессе которого происходят два последовательных деления, связанных с преобразованием хромосомного аппарата (мейоз). Кроме того, эти деления сопровождаются неравномерным разделением цитоплазмы между дочерними клетками. При делении овоцита первого порядка образуется одна крупная клетка – овоцит второго порядка, содержащая почти всю цитоплазму, и маленькая клетка, получившая название полярного, или редукционного тельца.

При втором делении созревания цитоплазма снова распределяется неравномерно. Образуется одна крупная овотида и второе редукционное тельце. В это время первое редукционное тельце также может разделиться на две клетки. Таким образом, из одного овоцита первого порядка образуются одна овотида и три редукционных тельца.

Далее из овотиды формируется яйцо, а редукционные тельца рассасываются или сохраняются на поверхности яйца, но не принимают участия в дальнейшем развитии. Неравномерное распределение цитоплазмы обеспечивает яйцу получение значительного количества цитоплазмы и питательных веществ, которые потребуются в будущем для развития зародыша.

У млекопитающих периоды размножения и роста яйцевых клеток проходят в фолликулах. Фолликул заполнен жидкостью, внутри него находится яйцеклетка. Во время овуляции стенка фолликула лопается, яйцеклетка попадает в брюшную полость, а затем, как правило, в яйцеводы (маточные трубы). Период созревания яйцевых клеток протекает в трубах, здесь же происходит оплодотворение.

У многих животных овогенез и созревание яиц совершаются лишь в определенные сезоны года.

4.Сперматогенез

Сперматогене́з — развитие мужских половых клеток (сперматозоидов),происходящее под регулирующим воздействием гормонов. Одна из форм гаметогенеза.Сперматозоиды развиваются из клеток-предшественников, которые проходят редукционные деления (деления мейоза) и формируют специализированные структуры (акросома, жгутик и пр.). В разных группах животных сперматогенез различается. У позвоночных животных сперматогенез проходит по следующей схеме: в эмбриогенезе первичные половые клетки — гоноциты мигрируют в зачаток гонады, где формируют популяцию клеток, называемых сперматогониями. С началом полового созревания сперматогонии начинают активно размножаться, часть из них дифференцируется в другой клеточный тип — сперматоциты I порядка, которые вступают в мейоз и после первого деления мейоза дают популяцию клеток, называемых сперматоцитами II порядка, проходящих впоследствии второе деление мейоза и образующих сперматиды; путём ряда преобразований последние приобретают форму и структуры сперматозоида в ходе спермиогенеза.

Сперматогенез у человека

Сперматогенез у человека в норме начинается в пубертатном периоде (около 12 лет) и продолжается до глубокой старости. Продолжительность полного сперматогенеза у мужчин составляет примерно 73—75 дней[1]. Один цикл зародышевого эпителия составляет приблизительно 16 дней[2]

Сперматозоиды образуются в яичках, а именно в извитых семенных канальцах. Стенка семенного канальца делится базальной мембраной на люминальную и адлюминальную стороны. На люминальной стороне расположены клетки Сертоли (сустентоциты) и предшественники половых клеток (сперматогонии, сперматоциты I и II порядков и сперматиды).

Сперматогонии, лежащие непосредственно на базальной мембране извитых семенных канальцев, проходят несколько последовательных стадий митотического деления. Общее количество сперматогоний в яичке мужчины составляет около 1 млрд. Различают две основные категории сперматогоний: А и В. Сперматогонии А, которые делятся митотически, сохраняют способность к делению и поддерживают свою популяцию. Остальные дефференцируются в сперматогоний В, которые «эвакуируются» клеточными контактами сустентоцитов (образуют под основанием половой клетки новый контакт и резорбируют старый). Сперматогония В делится митотически, дифференцируясь в сперматоцит I порядка, вступающий в мейоз.

В результате первого деления мейоза образуются две дочерние клетки сперматоциты второго порядка, каждый из которых содержит гаплоидный набор (23 у человека) d-хромосом [3]. Вторичные сперматоциты расположены ближе к просвету канальца. Во втором делении мейоза образуются две сперматиды. Таким образом, в результате деления одной сперматогонии образуются четыре сперматиды, каждая из которых обладает гаплоидным набором хромосом.

В ходе сложного процесса спермиогенеза сперматиды дифференцируются в зрелые сперматозоиды. Дифференцирующиеся сперматиды лежат в углублениях плазматической мембраны клеток Сертоли. При спермиогенезе комплекс Гольджи формирует акросому, содержащую протеолитические ферменты , которые при контакте с яйцеклеткой растворяют участок её блестящей оболочки (zona pellucida).

Сложный процесс сперматогенеза регулируется гонадотропными гормонами гипофиза и стероидными гормонами яичка. После полового созревания гипоталамус начинает выделять гонадотропный рилизинг-гормон, под влиянием которого гипофиз секретирует фолликулостимулирующий гормон (ФСГ), стимулирующий развитие и функционирование клетки Сертоли и лютеинизирующий гормон (ЛГ), стимулирующий клетки Лейдига к выработке тестостерона. Тестостерон оказывает воздействие на развитие клеток Сертоли, а также на предшественники половых клеток (в ассоциации с андроген-связывающим белком, выделяемым клетками Сертоли).

5.Генетика пола человека

Пол — совокупность признаков и свойств организма, обеспечивающих функцию воспроизведения потомства и передачу наследственной информации за счет образования гамет.

Самцы и самки большинства организмов различаются хромосомным набором соматических и половых клеток. В клетках имеются одинаковые (идентичные) хромосомы — аутосомы (А) или неполовые хромосомы и разные (неидентичные) хромосомы — гетеросомы, пли половые (X — хромосома; У — хромосома).

Аутосомы (неполовые хромосомы) — пары хромосом, одинаковые в хромосомных наборах клеток самцов и самок.

Гетеросомы (половые хромосомы) — пары хромосом, различающиеся в хромосомных наборах клеток самцов и самок.

Соматические клетки имеют диплоидный набор аутосом и одну пару половых хромосом (2А + XX или 2А + ХУ). Половые клетки имеют гаплоидный набор аутосом и одну половую хромосому (А+Х или А+У). Пол, продуцирующий два сорта гамет (А+Х; А+У), — гетерогаметный; один сорт гамет (А+Х) — гомогаметный.
Типы определения пола у организмов

1) XY — мужской пол (гетерогаметный), XX — женский пол (гомогаметный). Встречается у многих организмов, например, млекопитающие, большинство насекомых, черви, некоторые рыбы и др.

2) ZZ — мужской пол (гомогаметный), ZW — женский пол (гетерогаметный). Встречается несколько реже, например, у птиц, пресмыкающихся, некоторых земноводных и насекомых.

3) ХО — мужской пол (гетерогаметный, утративший в процессе эволюции одну из половых хромосом), XX — женский пол (гомогаметный). Встречается у организмов, в жизненном цикле которых наблюдается размножение партеногенезом (например, перепончатокрылые и прямокрылые насекомые).
Наследование пола и расщепление по полу

Пол наследуется как менделирующий признак, т. е. ведущий себя в соответствии с законами Г. Менделя. Любой организм является генетически бисексуальным, так как в его генотипе имеются гены обоих полов, т. е. унаследованные от матери и отца. У большинства организмов в популяциях соотношение особей мужского и женского пола одинаково, т. е. равно 1:1.

Пол будущего организма определяется в момент оплодотворения и связан с гаметой, принадлежащей гетерогаметному полу. Так, у человека яйцеклетка (А+Х) может быть оплодотворена сперматозоидом (А+X) или сперматозоидом (А+У). В связи с тем, что участие в оплодотворении той или иной мужской гаметы равновероятно, возникает равная вероятность рождения мальчика или девочки.
Наследование, сцепленное с полом

Наследование, сцепленное с полом — наследование и передача признаков, развитие которых определяют гены, расположенные в половых хромосомах. Впервые установлено Т. Морганом в1911 г.

Различают следующие 3 типа наследования признаков, сцепленных с полом: полное сцепление с полом, неполное и голандрия.

1) Полное сцепление с полом характеризуется тем, что гены, расположенные в Х — хромосоме уже в первом поколении дают расщепление по фенотипу. Признак матери передается только сыновьям, а признак отца — только дочерям.

2) Неполное сцепление с полом характерно для аллелей одинаковых генов расположенных как в Х, так и в Y — хромосоме. В этом случае рецессивный признак передается только или от «бабушек» к «внучкам» или от «дедушек» — «внукам».

3) Голандрическое наследование наблюдается при наличии определенных генов только в Y — хромосоме. У человека таким образом наследуется повышенная волосатость ушной раковины.

Қажетті материалды таппадың ба? Онда KazMedic авторларына тапсырыс бер

Молекулярно-генетические аспекты размножения

error: Материал көшіруге болмайды!