Экзаменационные вопросы по ИКТ

Экзаменационные вопросы по ИКТ

  1. Государственная программа «Информационный Казахстан – 2020» и декларация тысячелетия ООН. Роль ИКТ в ключевых секторах развития общества.

Государственная программа «Информационный Казахстан — 2020» разработана по поручению главы государства, озвученного в статье «Социальная модернизация Казахстана: двадцать шагов к Обществу Всеобщего Труда» от 10 июля 2012 года, а также в соответствии со Стратегическим планом развития Республики Казахстан до 2020 года, утвержденным Указом Президента от 1 февраля 2010 года.

Программа рассчитана на срок до 2020 года и направлена на создание всех необходимых условий, которые позволят нашей стране осуществить полноценный переход к информационному обществу.

Государственная программа «Информационный Казахстан — 2020»

Осуществлением государственной Программы «Информационный Казахстан — 2020» занимается Министерство транспорта и коммуникаций Республики Казахстан, а также центральные и местные государственные органы, органы местного самоуправления.

Целью программы является создание условий для перехода к информационному обществу.

Задачами программы являются:

— Повышение эффективности системы государственного управления.

— Обеспечение доступности инновационной и информационно-коммуникационной инфраструктуры.

— Создание информационной среды для социально-экономического и культурного развития общества.

Реализация программы рассчитана на 2 этапа:

1 этап: 2013—2017 гг.

2 этап: 2017—2020 гг.

В рейтинге ООН Е-Government Survey-2012 «Электронное правительство для людей», опубликованном в начале марта 2012 года, Казахстан занял 38-е место, поднявшись на 8 позиций по сравнению с 2010 годом. По индексу е-участия Казахстан вместе с Сингапуром разделил 2 место.

В нашей стране основной акцент был сделан только на одной из составляющих информационного общества – на формировании и развитии «электронного правительства», которое было успешно реализовано, о чем свидетельствуют высокие международные рейтинги. Однако задача формирования информационного общества, безусловно, шире, чем развитие только «электронного правительства» и отрасли телекоммуникаций. Поэтому для создания всех необходимых условий, была разработана Государственная программа «Информационный Казахстан – 2020» (далее – Программа).

Программой определены пять ключевых направлений:

1) развитие ИТ;

2) обеспечение доступности информационно-коммуникационной инфраструктуры;

3) обеспечение автоматизации деятельности государтсвенных органов и

оказания электронных услуг;

4) открытое правительство;

5) развитие отечественного информационного пространства

В Стратегическом плане развития Республики Казахстан до 2050 года отмечено, что стремительное развитие и адаптация ИКТ становятся важными факторами модернизации общества, влияя не только на экономические показатели, но и на образ жизни людей, что характеризует значимость развития

ИКТ для экономики и жизни граждан современного Казахстана Отрасль ИТ является локомотивом развития мировой экономики. В информационном веке ИТ и информационная инфраструктура способствуют созданию новых бизнес-моделей, товаров и услуг, новых открытий и изобретений, в целом являются научно-технологическим ключом к фундаментальной перестройке организации бизнес-моделей, опосредованно повышая общую конкурентоспособность экономики.

Характерной особенностью применения информационных и коммуникационных технологий (ИКТ) в современной педагогической науке является их многоаспектность, что, в первую очередь, обусловлено многогранностью программно-технических решений, дидактических характеристик этих технологий, поэтому не удивительно наличие широкого спектра точек зрения на проблему их использования в образовании. ИКТ сегодня представляют собой общий объект исследований для специалистов многих наук, которые выделяют свой предмет исследования в ИКТ: технических (в первую очередь информатики или computer science, теории связи); социально-гуманитарных (педагогики, психологии, лингвистики, социологии, философии и пр.); междисциплинарных направлений (педагогической и социальной информатики, культурологии, семиотики, герменевтики, библиотековедения, этнографии, полито-логии и пр.).

  1. Определение ИКТ. Предмет ИКТ и его цели. Стандарты в области ИКТ.

(ИКТ) – это обобщающее понятие, описывающее различные устройства, механизмы, способы, алгоритмы обработки информации.

Цели: 1.Формирование основ научного

2.Формирование общеучебных и общекультурных навыков работы с информацией (формирование умений грамотно пользоваться источниками информации, правильно организовать информационный процесс)

3.Овладение средствами ИКТ, формирование основ информационно-коммуникационной компетентности (подготовка к разнообразным видам деятельности, связанным с обработкой информации с использованием ИКТ)

4.Освоение правовых и этических норм поведения человека в информационной сфере деятельности.

Стандарты в области ИКТ

Роль ИКТ в ключевых секторах развития общества. Стандарты в области ИКТ.

  1. Требования к электронным информационным ресурсам и интернет-ресурсам
  2. Требования к разрабатываемому или приобретаемому прикладному программному обеспечению
  3. Требования к информационно-коммуникационной инфраструктуре
  4. Требования к информационной системе
  5. Требования к технологической платформе
  6. Требования к аппаратно-программному комплексу
  7. Требования к сетям телекоммуникаций
  8. Требования к системам бесперебойного функционирования технических средств и информационной безопасности
  9. ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ КАЗАХСТАН.

Область применения

Настоящий государственный стандарт определяет общие требования к электронным учебным изданиям и требования к его составу, функциям, содержанию, элементам обучения, оформлению, документации и выходным сведениям.

Настоящий стандарт применяется для всех электронных учебных изданий, создаваемых для образовательных учреждений.

Основная роль в развитии информационного общества принадлежит международным стандартам, создаваемым на основе шести принципов, определенных Всемирной торговой организацией (ВТО): открытость, прозрачность, непредвзятость и соблюдение консенсуса, эффективность и целесообразность, согласованность и нацеленность на развитие.

4.Основные принципы работы ЭВМ.

В основу построения подавляющего большинства компьюте­ров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.

Принцип программного управления. Программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного перехода, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп».

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти, поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение цик­лов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

Принцип адресности. Структурно основная память состоит из перенумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка.

Отсюда следует возможность давать имена областям памяти так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

5.Определение компьютерной системы. Состав компьютерных систем.

Компьютерная система — любое устройство или группа взаимосвязанных или смежных устройств, одно или более из которых, действуя в соответствии с программой, осуществляет автоматизированную обработку данных

Состав компьютерных систем:

  1. Системный блок – основной блок компьютерной системы.

В нем располагаются устройства, считающиеся внутренними. Устройства, подключающиеся к системному блоку снаружи, считаются внешними.

В системный блок входит процессор, оперативная память, накопители на жестких и гибких магнитных дисках, на оптических дисках и некоторые другие устройства. На лицевой панели вы видите несколько кнопок – уже известная вам кнопка Power – включения и кнопка Reset – перезагрузка компьютера, пользоваться которой можно лишь с разрешения учителя. Несколько световых индикаторов – включения и обращения к жесткому диску.

  1. Клавиатура – клавишное устройство, предназначенное для управления работой компьютера и ввода в него информации. Информация вводиться в виде алфавитно-цифровых символьных данных. Стандартная клавиатура имеет 104 клавиши и 3 информирующих о режимах работы световых индикатора в правом верхнем углу.
  2. Монитор – устройство для визуального воспроизведения символьной и графической информации. Служит в качестве устройства вывода. Они отдаленно напоминают бытовые телевизоры.

В настольных компьютерах обычно используются мониторы на электронно-лучевой трубке (ЭЛТ). Однако монитор является также источником высокого статического электрического потенциала, электромагнитного и рентгеновского излучений, которые могут оказывать неблагоприятное воздействие на здоровье человека.

В портативных и карманных компьютерах применяют мониторы на жидких кристаллах (ЖК). В последнее время такие мониторы стали широко использоваться и в настольных компьютерах.

Преимущество ЖК-мониторов перед мониторами на ЭЛТ состоит в отсутствии вредных для человека электромагнитных излучений и компактности. Но ЖК-мониторы обладают и недостатками. Наиболее важные из них – это плохая цветопередача и смазывание быстро движущейся картинки. Иначе говоря, если взять достаточно качественный ЭЛТ-монитор, то он будет пригоден для любых задач без оговорок – для работы с текстом, для обработки фотографий, для игр и так далее; в то же время среди ЖК-мониторов можно выделить модели, подходящие для игр – но они непригодны для работы с фотографиями, можно выделить модели, имеющие прекрасную цветопередачу – но они плохо подходят для динамичных игр, и так далее. Мониторы могут иметь различный размер экрана. Размер диагонали экрана измеряется в дюймах (1 дюйм =2,54 см) и обычно составляет 15, 17, 19 и более дюймов.

  1. Мышь – устройство «графического» управления. При перемещении мыши по коврику на экране перемещается указатель мыши, при помощи которого можно указывать на объекты и/или выбирать их. Используя клавиши мыши (их может быть две или три) можно задать тот или другой тип операции с объектом. А с помощью колесика можно прокручивать вверх или вниз не умещающиеся целиком на экране изображения, текст или web-страницы.

В оптико-механических мышах основным рабочим органом является массивный шар (металлический, покрытый резиной). При перемещении мыши по поверхности он вращается, вращение передается двум валам, положение которых считывается инфракрасными оптопарами (т.е. парами «светоизлучатель-фотоприемник») и затем преобразующийся в электрический сигнал, управляющий движением указателя мыши на экране монитора. Главным «врагом» такой мыши является загрязнение. В настоящее время широкое распространение получили оптические мыши, в которых нет механических частей. Источник света размещенный внутри мыши, освещает поверхность, а отраженный свет фиксируется фотоприемником и преобразуется в перемещение курсора на экране. Современные модели мышей могут быть беспроводными, т.е. подключающимися к компьютеру без помощи кабеля.

  1. Периферийные устройства – устройства, подключаемые к компьютеру извне. Обычно эти устройства предназначены для ввода и вывода информации.

Вот некоторые из них:

  • Принтер;
  • Сканер;
  • Модем;
  • Web-камера.

Принтер служит для вывода информации на бумажный носитель (бумагу).

Существуют три типа принтеров:

  • матричный
  • струйный
  • лазерный

Матричные принтеры — это принтеры ударного действия. Печатающая головка матричного принтера состоит из вертикального столбца маленьких стержней (обычно 9 или 24), которые под воздействием магнитного поля «выталкиваются» из головки и ударяют по бумаге (через красящую ленту). Перемещаясь, печатающая головка оставляет на бумаге строку символов.

Недостатки матричных принтеров состоят в том, что они печатают медленно, производят много шума и качество печати оставляет желать лучшего (соответствует примерно качеству пишущей машинки).

В последние годы широкое распространение получили цветные струйные принтеры. В них используется чернильная печатающая головка, которая под давлением выбрасывает чернила из ряда мельчайших отверстий на бумагу. Перемещаясь вдоль бумаги, печатающая головка оставляет строку символов или полоску изображения.

Струйные принтеры могут печатать достаточно быстро (до нескольких страниц в минуту) и производят мало шума. Качество печати (в том числе и цветной) определяется разрешающей способностью струйных принтеров, которая может достигать фотографического качества 2400 dpi. Это означает, что полоска изображения по горизонтали длиной в 1 дюйм формируется из 2400 точек (чернильных капель).

Лазерные принтеры обеспечивают практически бесшумную печать. Высокую скорость печати (до 30 страниц в минуту) лазерные принтеры достигают за счет постраничной печати, при которой страница печатается сразу целиком.

Высокое типографское качество печати лазерных принтеров обеспечивается за счет высокой разрешающей способности, которая может достигать 1200 dpi и более.

Плоттер. Для вывода сложных и широкоформатных графических объектов (плакатов, чертежей, электрических и электронных схем и пр.) используются специальные устройства вывода — плоттеры. Принцип действия плоттера такой же, как и струйного принтера.

Сканеры служат для автоматического ввода текстов и графики в компьютер.

Сканеры бывают двух типов:

  • ручные
  • планшетные.

Ручной сканер для компьютера похож на сканер, используемый в супермаркетах для считывания штрих-кода. Такой сканер перемещается по листу с информацией построчно вручную, и информация заносится в компьютер для дальнейшего редактирования. Планшетный сканер выглядит и работает примерно так же, как и ксерокс – приподнимается крышка, текст или рисунок помещается на рабочее поле, и информация считывается.

Системы распознавания текстовой информации позволяют преобразовать отсканированный текст из графического формата в текстовый.

Разрешающая способность сканеров составляет 600 dpi и выше.

Модем или модемная плата служит для связи удалённых компьютеров по телефонной сети. Модем бывает внутренний (установлен внутри системного блока) и внешний (располагается рядом с системным блоком и соединяется с ним при помощи кабеля).

6.Архитектура и компоненты компьютерных систем.

Основная компоновка частей компьютера и связь между ними называется архитектурой. При описании архитектуры компьютера определяется состав входящих в него компонент, принципы их взаимодействия, а также их функции и характеристики.

Основная часть системной платы — микропроцессор (МП) или CPU (Central Processing Unit), он управляет работой всех узлов ПК и программой, описывающей алгоритм решаемой задачи. МП имеет сложную структуру в виде электронных логических схем. В качестве его компонент можно выделить:

A).    АЛУ    –    арифметико-логическое    устройство, предназначенное для выполнения арифметических и логических операций над данными и адресами памяти;

Б).   Регистры   или   микропроцессорная   память   — сверхоперативная память, работающая со скоростью процессора, АЛУ работает именно с ними;

B). УУ – устройство управления – управление работой всех узлов МП посредством выработки и передачи другим его компонентам управляющих импульсов, поступающих от кварцевого тактового генератора, который при включении ПК начинает вибрировать с постоянной частотой (100 МГц, 200-400 МГц). Эти колебания и задают темп работы всей системной платы;

Г). СПр – система прерываний – специальный регистр, описывающий состояние МП, позволяющий прерывать работу МП в любой момент времени для немедленной обработки некоторого поступившего запроса, или постановки его в очередь; после обработки запроса СПр обеспечивает восстановление прерванного процесса;

Д). Устройство управления общей шиной — интерфейсная система.

Для расширения возможностей ПК и повышения функциональных характеристик микропроцессора дополнительно может поставляться математический сопроцессор, служащий для расширения набора команд МП. Например, математический сопроцессор IBM-совместимых ПК расширяет возможности МП для вычислений с плавающей точкой; сопроцессор в локальных сетях (LAN-процессор) расширяет функции МП в локальных сетях. Характеристики процессора:

быстродействие (производительность, тактовая частота) — количество операций, выполняемых в секунду.

разрядность — максимальное количество разрядов двоичного числа, над которыми одновременно может выполняться машинная операция.

Интерфейсная система – это:

-шина управления (ШУ) – предназначена для передачи управляющий импульсов и синхронизации сигналов ко всем устройствам ПК;

-шина адреса (ША) – предназначена для передачи кода адреса ячейки памяти или порта ввода/вывода внешнего устройства;

-шина данных (ШД) – предназначена для параллельной передачи всех разрядов числового кода;

-шина питания – для подключения всех блоков ПК к системе электропитания.

Интерфейсная система обеспечивает три направления передачи информации:

– между МП и оперативной памятью;

– между МП и портами ввода/вывода внешних устройств;

– между оперативной памятью и портами ввода/вывода внешних устройств. Обмен информацией между устройствами и системной шиной происходит с помощью кодов ASCII.

Память – устройство для хранения информации в виде данных и программ. Память делится прежде всего на внутреннюю (расположенную на системной плате) и внешнюю (размещенную на разнообразных внешних носителях информации).

Внутренняя память в свою очередь подразделяется на:

– ПЗУ (постоянное запоминающее устройство) или ROM (read only memory), которое содержит – постоянную информацию, сохраняемую даже при отключенном питании, которая служит для тестирования памяти и оборудования компьютера, начальной загрузки ПК при включении. Запись на специальную кассету ПЗУ происходит на заводе фирмы-изготовителя ПК и несет черты его индивидуальности. Объем ПЗУ относительно невелик – от 64 до 256 Кб.

– ОЗУ (оперативное запоминающее устройство, ОП — оперативная память) или RAM (random access memory), служит для оперативного хранения программ и данных, сохраняемых только на период работы ПК. Она энергозависима, при отключении питания информация теряется. ОП выделяется особыми функциями и спецификой доступа:

(1) ОП хранит не только данные, но и выполняемую программу;

(2) МП имеет возможность прямого доступа в ОП, минуя систему ввода/вывода.

Кэш-память – имеет малое время доступа, служит для временного хранения промежуточных результатов и содержимого наиболее часто используемых ячеек ОП и регистров МП. Объем кэш-памяти зависит от модели ПК и составляет обычно 256 Кб.

Внешняя память. Устройства внешней памяти весьма разнообразны. Предлагаемая классификация учитывает тип носителя, т.е. материального объекта, способного хранить информацию.

(1)     Накопители на магнитной ленте исторически появились раньше, чем накопители на магнитном диске. Бобинные накопители используются в суперЭВМ и mainframe. Ленточные накопители называются стримерами, они предназначены для создания резервных копий программ и документов, представляющих ценность. Запись может производиться на обычную видеокассету или на специальную кассету. Емкость такой кассеты до 1700 Мб, длина ленты 120 м, ширина 3.81 мм (2 – 4 дорожки). Скорость считывания информации-до 100 Кб/сек.

(2)   Диски относятся к носителям информации с прямым доступом, т.е. ПК может обратиться к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно.

Магнитные диски (МД)— в качестве запоминающей среды используются магнитные материалы со специальными свойствами, позволяющими фиксировать два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры — 0 и 1. Информация на МД записывается и считывается магнитными головками вдоль концентрических окружностей – дорожек. Каждая дорожка разбита на сектора (1 сектор = 512 б). Обмен между дисками и ОП происходит целым числом секторов. Кластер — минимальная единица размещения информации на диске, он может содержать один и более смежных секторов дорожки. При записи и чтении МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к выбранной для записи или чтения дорожке. Данные на дисках хранятся в файлах — именованных областях внешней памяти, выделенных для хранения массива данных. Кластеры, выделяемые файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Вся информация о том, где именно записаны кусочки файла, хранится в таблице размещения файлов FAT (file allocation table).

Дисковые массивы RAID – применяются в машинах-серверах БД и в супер ЭВМ, они представляют собой матрицу с резервируемыми независимыми дисками, несколько НЖМД объединены в один логический диск. Можно объединить до 48 физических дисков любой емкости, формирующих до 120 логических дисков (RAID7). Емкость таких дисков составляет до 5Т6 (терабайт=1012).

НОД (накопители на оптических дисках) делятся на:

не перезаписываемые лазерно-оптические диски или компакт-диски (CD-ROM). Поставляются фирмой-изготовителем с уже записанной на них информацией. Запись на них возможна в лабораторных условиях лазерным лучом большой мощности. В оптическом дисководе ПК эта дорожка читается лазерным лучом меньшей мощности. Ввиду чрезвычайно плотной записи CD-ROM имеют емкость до 1,5 Гб, время доступа от 30 до 300 мс, скорость считывания данных от 150 до 1500 Кб/сек;

перезаписываемые CD-диски имеют возможность записывать информацию прямо с ПК, но для этого необходимо специальное устройство.

Магнитооптические диски (ZIP) — запись на такой диск производится под высокой температурой намагничиванием активного слоя, а считывание — лучом лазера. Эти диски удобны для хранения информации, но оборудование стоит дорого. Емкость такого диска до 20,8 Мб, время доступа от 15 до 150 мс, скорость считывания информации до 2000 Кб/сек.

Контроллеры служат для обеспечения прямой связи с ОП, минуя МП, они используются для устройств быстрого обмена данными с ОП – НГМД, НЖД, дисплей и др., обеспечения работы в групповом или сетевом режиме. Клавиатура, дисплей, мышь являются медленными устройствами, поэтому они связаны с системной платой контроллерами и имеют в ОП свои отведенные участки памяти.

Порты бывают входными и выходными, универсальными (ввод – вывод), они служат для обеспечения обмена информацией ПК с внешними, не очень быстрыми устройствами. Информация, поступающая через порт, направляется в МП, а потом в ОП. Выделяют два вида портов:

последовательный — обеспечивает побитный обмен информацией, обычно к такому порту подключают модем;

параллельный — обеспечивает побайтный обмен информацией, к такому порту подключают принтер. Современные ПК обычно оборудованы 1 параллельным и 2 последовательными портами.

Принтеры — это устройства вывода данных из ЭВМ, преобразовывающие     информационные     ASCII-коды    в соответствующие им графические символы и фиксирующие эти символы на бумаге. Принтеры – наиболее развитая группа внешних устройств, насчитывается более 1000 модификаций.

Принтеры бывают черно-белые или цветные по способу печати они делятся на:

матричные — в этих принтерах изображение формируется из точек ударным способом, игольчатая печатающая головка перемещается в горизонтальном направлении, каждая иголочка управляется электромагнитом и ударяет бумагу через красящую ленту. Количество игл определяет качество печати (от 9 до 24), скорость печати 100-300 символов/сек, разрешающая способность 5 точек на мм;

струйные — в печатающей головке имеются вместо иголок тонкие трубочки – сопла, через которые на бумагу выбрасываются мельчайшие капельки чернил (12 – 64 сопла), скорость печати до 500 символов/сек, разрешающая способность – 20 точек на мм;

Термографические — матричные принтеры, оснащенные вместо игольчатой печатающей головки головкой с термоматрицей, при печати используется специальная термобумага;

лазерные — используется электрографический способ формирования  изображений,  лазер  служит  для  создания сверхтонкого светового луча, вычерчивающего на поверхности светочувствительного барабана контуры невидимого точечного электронного изображения. После проявления изображения порошком красителя (тонера), налипающего на разряженные участки, выполняется печать – перенос тонера на бумагу и закрепление изображения на бумаге при помощи высокой температуры. Разрешение у таких принтеров до 50 точек/мм, скорость печати – 1000 символов/сек.

Сканеры – устройства ввода в ЭВМ информации непосредственно с бумажного документа. Можно вводить тексты, схемы, рисунки, графики, фотографии и другую информацию. Файл, создаваемый сканером в памяти ЭВМ называется битовой картой. Существует два формата представления графической информации в ЭВМ:

растровый — изображение запоминается в виде мозаичного набора множества точек на экране монитора, редактировать такие изображения с помощью текстовых редакторов нельзя, эти изображения редактируют в Corel Draw, Adobe PhotoShop;

текстовый — информация идентифицируется характеристиками шрифтов, кодами символов, абзацев, стандартные текстовые процессоры предназначены для работы именно с таким представлением информации.

Битовая карта требует большого объема памяти, поэтому после сканирования битовые карты упаковывают с помощью специальных программ (PCX, GIF). Сканер подключается к параллельному порту. Сканеры бывают:

черно-белые и цветные (число передаваемых цветов от 256 до 65 536);

ручные перемещаются по изображению вручную, за один проход вводится небольшое количество информации (до 105 мм), скорость считывания – 5-50 мм/сек;

планшетные — сканирующая головка перемещается относительно оригинала автоматически, скорость сканирования -2-10 сек на страницу;

роликовые — оригинал автоматически перемещается относительно сканирующей головки;

проекционные – напоминают фотоувеличитель, внизу -сканируемый документ, сверху – сканирующая головка;

штрих-сканеры — устройства для считывания штрих-кодов на товарах в магазинах.

Разрешающая способность сканеров от 75 до 1600 точек/дюйм.

Манипуляторы – компьютерные устройства, управляемые руками оператора:

мышь — устройство для определения относительных координат (смещения относительно предыдущего положения или направления) движения руки оператора. Относительные координаты передаются в компьютер и при помощи специальной программы могут вызывать перемещения курсора на экране. Для отслеживания перемещения мыши используются различные виды датчиков. Самый распространенный – механический (шарик, к которому прикасаются несколько  валиков),  существует  еще  оптический датчик, обеспечивающий более высокую точность считывания координат;

джойстик — рычажный указатель – устройство для ввода направления движения руки оператора, их чаще используют для игр на компьютере;

дигитайзер или оцифровывающий планшет — устройство для точного ввода графической информации (чертежей, графиков, карт) в компьютер. Он состоит из плоской панели (планшета) и связанного с ней ручного устройства – пера. Оператор ведет вдоль графика перо, при этом абсолютные координаты поступают в компьютер.

Клавиатура — устройство для ввода информации в память компьютера. Внутри расположена микросхема, клавиатура связана с системной платой, нажатие любой клавиши продуцирует сигнал (код символа в системе ASCII -16-ричный порядковый номер символа в таблице), в памяти ЭВМ специальная программа по коду восстанавливает внешний вид нажатого символа и передает его изображение на монитор.

7.Характеристики компьютерных систем: Вычислительная мощность компьютера (производительность      компьютера), тактовая частота, разрядность. Процессорное CPU время,  закон Амдала

Основные Характеристики комп. Систем:

Производительность (быстродействие) ПК – возможность компьютера обрабатывать большие объёмы информации. Определяется быстродействием процессора, объёмом ОП и скоростью доступа к ней (например, Pentium III обрабатывает информацию со скоростью в сотни миллионов операций в секунду)

Производительность (быстродействие) процессора – количество элементарных операций выполняемых за 1 секунду.

Тактовая частота процессора (частота синхронизации) – число тактов процессора в секунду, а такт – промежуток времени (микросекунды) за который выполняется элементарная операция (например сложение). Таким образом Тактовая частота – это число вырабатываемых за секунду импульсов, синхронизирующих работу узлов компьютера. Именно ТЧ определяет быстродействие компьютера

Задается ТЧ специальной микросхемой «генератор тактовой частота», который вырабатывает периодические импульсы. На выполнение процессором каждой операции отводится определенное количество тактов. Частота в 1Мгц = 1миллиону тактов в 1 секунду.

Разрядность процессора – max длина (кол-во разрядов) двоичного кода, который может обрабатываться и передаваться процессором целиком.

Разрядность связана с размером специальных ячеек памяти – регистрами. Регистр в 1байт (8бит) называют восьмиразрядным, в 2байта – 16-разрядным и тд.  Высокопроизводительные компьютеры имеют 8-байтовые регистры (64разряда)

Зако́н Амдала — иллюстрирует ограничение роста производительности вычислительной системы с увеличением количества вычислителей. Джин Амдал сформулировал закон в 1967 году, обнаружив простое по существу, но непреодолимое по содержанию ограничение на рост производительности при распараллеливании вычислений: «В случае, когда задача разделяется на несколько частей, суммарное время её выполнения на параллельной системе не может быть меньше времени выполнения самого длинного фрагмента». Согласно этому закону, ускорение выполнения программы за счёт распараллеливания её инструкций на множестве вычислителей ограничено временем, необходимым для выполнения её последовательных инструкций

8.Поколения компьютерных систем. Техническое обеспечение различных поколений компьютерных систем.

Первое поколение. Компьютеры на электронных лампах (194х-1955)

Быстродействие: несколько десятков тысяч операций в секунду.

Особенности:

Поскольку лампы имеют существенные размеры и их тысячи, то машины имели огромные размеры.

Поскольку ламп много и они имеют свойство перегорать, то часто компьютер простаивал из-за поиска и замены вышедшей из строя лампы.

Лампы выделяют большое количество тепла, следовательно, вычислительные машины требуют специальные мощные охладительные системы.

Второе поколение. Компьютеры на транзисторах (1955-1965)

Быстродействие: сотни тысяч операций в секунду.

По сравнению с электронными лампами использование транзисторов позволило уменьшить размеры вычислительной техники, повысить надежность, увеличить скорость работы (до 1 млн. операций в секунду) и почти свести на нет теплоотдачу. Развиваются способы хранения информации: широко используется магнитная лента, позже появляются диски. В этот период была замечена первая компьютерная игра.

Третье поколение. Компьютеры на интегральных схемах (1965-1980)

Быстродействие: миллионы операций в секунду.

Интегральная схема представляет собой электронную схему, вытравленную на кремниевом кристалле. На такой схеме умещаются тысячи транзисторов. Следовательно, компьютеры этого поколения были вынуждены стать еще мельче, быстрее и дешевле.

Последнее свойство позволяло компьютерам проникать в различные сферы деятельности человека. Из-за этого они становились более специализированными (т.е. имелись различные вычислительные машины под различные задачи).

Появилась проблема совместимости выпускаемых моделей (программного обеспечения под них). Впервые большое внимание совместимости уделила компания IBM.

Было реализовано мультипрограммирование (это когда в памяти находится несколько выполняемых программ, что дает эффект экономии ресурсов процессора).

Четвертое поколение. Компьютеры на больших (и сверхбольших) интегральных схемах (1980-…)

Быстродействие: сотни миллионов операций в секунду.

Появилась возможность размещать на одном кристалле не одну интегральную схему, а тысячи. Быстродействие компьютеров увеличилось значительно. Компьютеры продолжали дешеветь и теперь их покупали даже отдельные личности, что ознаменовало так называемую эру персональных компьютеров. Но отдельная личность чаще всего не была профессиональным программистом. Следовательно, потребовалось развитие программного обеспечения, чтобы личность могла использовать компьютер в соответствие со своей фантазией.

В конце 70-х – начале 80-х популярностью пользовался компьютера Apple, разработанный Стивом Джобсом и Стивом Возняком. Позднее в массовое производство был запущен персональный компьютер IBM PC на процессоре Intel.

Позднее появились суперскалярные процессоры, способные выполнять множество команд одновременно, а также 64-разрядные компьютеры. 

Пятое поколение

Сюда относят неудавшийся проект Японии (хорошо описан в Википедии). Другие источники относят к пятому поколению вычислительных машин так называемые невидимые компьютеры (микроконтроллеры, встраиваемые в бытовую технику, машины и др.) или карманные компьютеры.

Также существует мнение, что к пятому поколению следует относить компьютеры с двухядерными процессорами. С этой точки зрения пятое поколение началось примерно с 2005 года.

9.Пользовательский интерфейс, как средство человеко-компьютерного взаимодействия .Виды интерфейсов:  интерфейс командной строки, текстовый интерфейс, графический интерфейс. Юзабилити интерфейсов.

Интерфе́йс по́льзователя, он же по́льзовательский интерфейс— интерфейс, обеспечивающий передачу информации между пользователем-человеком и программно-аппаратными компонентами компьютерной системы.

Виды интерфейсов:

Текстовый пользовательский интерфейс — разновидность интерфейса пользователя, использующая при вводе-выводе и представлении информации исключительно набор буквенно-цифровых символов и символов псевдографики. Характеризуется малой требовательностью к ресурсам аппаратуры ввода-вывода (в частности, памяти) и высокой скоростью отображения информации. Появился на одном из начальных этапов развития вычислительной техники, при развитии возможностей аппаратуры, нацеленной на реализацию появившегося ранее интерфейса командной строки, который, в свою очередь, является наследником использования телетайпов в качестве интерфейса вычислительной техники. Интерфейс командной строки имеет ряд преимуществ в юзабилити перед графическим интерфейсом, поэтому программы с текстовым интерфейсом создаются и используются по сей день, особенно в специфических сферах и на маломощном оборудовании.

Недостатком подобного типа интерфейса является ограниченность изобразительных средств по причине ограниченности количества символов, включённых в состав шрифта, предоставляемого аппаратурой.

Интерфейс командной строки — разновидность текстового интерфейса между человеком и компьютером, в котором инструкции компьютеру даются в основном путём ввода с клавиатуры текстовых строк (команд), в UNIX-системах возможно применение мыши. Также известен под названием консоль.

Интерфейс командной строки противопоставляется системам управления программой на основе меню, а также различным реализациям графического интерфейса.

Формат вывода информации в интерфейсе командной строки не регламентируется; обычно это также простой текстовый вывод, но может быть и графическим, звуковым и т. д.

Графи́ческий интерфе́йс по́льзователя — разновидность пользовательского интерфейса, в котором элементы интерфейса (меню, кнопки, значки, списки и т. п.), представленные пользователю на дисплее, исполнены в виде графических изображений. В отличие от интерфейса командной строки, в GUI пользователь имеет произвольный доступ (с помощью устройств ввода — клавиатуры, мыши, джойстика и т. п.) ко всем видимым экранным объектам (элементам интерфейса) и осуществляет непосредственное манипулирование ими. Чаще всего элементы интерфейса в GUI реализованы на основе метафор и отображают их назначение и свойства, что облегчает понимание и освоение программ неподготовленными пользователями.

Графический интерфейс пользователя является частью пользовательского интерфейса и определяет взаимодействие с пользователем на уровне визуализированной информации.

10.Информация. Виды информации. Свойства информации.

Информация — совокупность данных, зафиксированных на материальном носителе, сохранённых и распространённых во времени и пространстве.

Основные виды информации по её форме представления, способам её кодирования и хранения, что имеет наибольшее значение для информатики, это:

графическая или изобразительная — первый вид, для которого был реализован способ хранения информации об окружающем мире в виде наскальных рисунков, а позднее в виде картин, фотографий, схем, чертежей на бумаге, холсте, мраморе и др. материалах, изображающих картины реального мира;

звуковая (акустическая) — мир вокруг нас полон звуков и задача их хранения и тиражирования была решена с изобретением звукозаписывающих устройств в 1877 г. её разновидностью является музыкальная информация — для этого вида был изобретен способ кодирования с использованием специальных символов, что делает возможным хранение её аналогично графической информации;

текстовая — способ кодирования речи человека специальными символами — буквами, причем разные народы имеют разные языки и используют различные наборы букв для отображения речи; особенно большое значение этот способ приобрел после изобретения бумаги и книгопечатания;

числовая — количественная мера объектов и их свойств в окружающем мире; особенно большое значение приобрела с развитием торговли, экономики и денежного обмена; аналогично текстовой информации для её отображения используется метод кодирования специальными символами — цифрами, причем системы кодирования (счисления) могут быть разными;

видеоинформация — способ сохранения «живых» картин окружающего мира, появившийся с изобретением кино.

Свойства информации:

Характерной отличительной особенностью информации от других объектов права информации влияют как свойства исходных данных, составляющих ее содержательную часть, так и свойства методов, фиксирующих эту информацию.

С точки зрения информатики, наиболее важными представляются следующие общие качественные свойства: достоверность, полнота, точность, актуальность, полезность, ценность, своевременность, понятность, доступность, краткость и пр.

Субъективность информации. Информация существует только во взаимосвязи с субъектом, передающим эту информацию и зависит от человеческого сознания. Информация — это субъективное отражение внешнего объективного мира. Информация зависит от методов ее фиксации и оценки.

Пример. Объективными являются данные – показания термометра в конкретном месте в конкретное время, а информация «На улице тепло» является субъективной оценкой этих данных, как и информация «На улице 22 градуса тепла». При этом, можно говорить только о точности этой информации, но не о её объективности.

Объективными являются данные, полученные с помощью исправных датчиков, измерительных приборов. Отражаясь в сознании человека, информация искажается (в большей или меньшей степени) в зависимости от мнения, суждения, опыта, знаний конкретного субъекта.

Достоверность информации. Информация достоверна, если она отражает истинное положение дел. Достоверная информация помогает принять нам правильное решение. Недостоверной информация может быть по следующим причинам:

преднамеренное искажение (дезинформация) или непреднамеренное искажение субъективного свойства;

искажение в результате воздействия помех («испорченный телефон») и недостаточно точных средств ее фиксации.

Полнота информации. Информацию можно назвать полной, если ее достаточно для понимания и принятия решений. Неполная информация может привести к ошибочному выводу или решению.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т. п.

Актуальность информации — важность для настоящего времени, злободневность, насущность. Только вовремя полученная информация может быть полезна.

Полезность (ценность) информации. Полезность может быть оценена применительно к нуждам конкретных ее потребителей и оценивается по тем задачам, которые можно решить с ее помощью.

Сайттағы материалды алғыңыз келе ме?

ОСЫНДА БАСЫҢЫЗ

Бұл терезе 3 рет ашылған соң кетеді. Қолайсыздық үшін кешірім сұраймыз!