В чем заключается необходимость выделения различных уровней организации жизни?

В процессе эволюции происходило постепенное усложнение организации живой материи, причем по мере образования очередного уровня предыдущий входил в него как составная часть. В результате окружающий нас мир живых существ представляет собой совокуп­ность биологических систем разной степени сложности. Это и обуславливает необходимость выделения различных уровней организации живой материи. Чрезвычайно важно также то, что объединение нескольких систем, принадлежащих к одному уровню (например, клеток), дает не просто арифметическую сумму их свойств. Происходит подъем на качественно более высокую ступень, и новая система обладает расширенными возможностями и способностями (ткань, многоклеточный организм).

Уровни организации жизни.

В целом принято рассматривать четыре уровня организации живых систем, что в значительной степени условно, так как в них можно выделить множество подуровней

УровниПодуровни
Молекулярно-генетическийОрганическая молекула

Макромолекула, в том числе ген

Макромолекулярный комплекс,

в том числе вирус

Органоид клетки

ОнтогенетическийКлетка

Ткань

Орган

Организм

Популяционно-видовойПопуляция

Вид

БиогеоценотическийСообщество, биоценоз

Биогеоценоз

Биосфера

 

Обозначенные в таблице уровни и подуровни представляют так называемые логические системы, они отражают сложность и иерархию структурно-функциональной организации биосистем в настоящее время. Кроме того, можно выделить исторические системы, условные объединения организмов, начиная с популяций, отражающие историю их происхождения и развития в ходе эволюции. Это – вид, род, семейство, отряд (порядок), класс, тип (отдел), царство, империя.

Дадим краткую характеристику структурно-функциональных (логических) уровней организации живых систем.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ УРОВЕНЬ

Представлен разнообразными молекулами, находящимися в живой клетке.

  • Компоненты
  • Молекулы неорганических и органических соединений
  • Молекулярные комплексы химических соединений (мембрана и др.)
  • Основные процессы
  • Объединение молекул в особые комплексы
  • Осуществление физико-химических реакций в упорядоченном виде
  • Копирование ДНК, кодирование и передача генетической информации

 

На уровне макромолекул степень сложности систем, по сравнению с обычными молекулами, растет. Однако этот уровень еще не достаточен для возникновения полноценной жизни.

Макромолекулами принято называть очень крупные, обычно полимерные (многозвенные) молекулы. В живых организмах различают четыре типа макромолекул: углеводы, липиды, белки и нуклеиновые кислоты. Они образуют химическую основу клеток, хотя некоторые углеводы и белки входят также в состав межклеточного вещества, обычно вместе с солями (основное вещество хряща, кости).

Рис. Структура основных макромолекул.

Онтогенетический уровень

Онтогенез- это индивидуальное развитие организма, начиная от одной клетки (зиготы, образующейся при слиянии яйцеклетки и сперматозоида) до взрослого многоклеточного существа со множеством специализированных тканей и органов.

Клеточный подуровень:

Клетка — это структурно-функциональная единица живого. Процессы, происходящие в клетке, лежат в основе роста и развития живых организмов.

  • Компонент
    • Комплексы молекул химических соединений и органоиды клетки
  • Основные процессы
    • Биосинтез, фотосинтез
    • Регуляция химических реакций
    • Деление клеток
    • Вовлечение химических элементов Земли и энергии Солнца в биосистемы

 

Необходимость объединения этих подуровней в один онтогенетический уровень вызвана двумя причинами. Во-первых, зигота – по сути обычная клетка – уже представляет организм, хотя и на одноклеточной стадии развития. Во-вторых, в природе существуют не только многоклеточные, но и одноклеточные организмы как животного, так и растительного свойства – амеба, инфузория, эвглена, хлорелла и др. Бактерии – особо мелкие и безъядерные (прокариотные) клетки – тоже самостоятельные организмы, хотя живут обычно колониями. Так что понятия «клетка» и «организм» в определенных случаях совпадают.

Из сказанного следует очень важный вывод: клетка является наименьшей, то есть элементарной живой системой, так как ей присущи все свойства живого организма, свойства жизни как явления. Клетка, как и многоклеточный организм способна питаться, поглощать энергию, синтезировать вещества, двигаться, реагировать на раздражители, размножаться, приспосабливаться и д.т. Этому способствует достаточно высокая степень структурной дискретности – внутреннее расчленение клетки на органоиды, изолированные отсеки – особенно выраженная у высших эукариотических клеток. Рис.Схема организации про- и эукариотной клеток.

 

Существует нерешенная проблема клеточного уровня (подуровня), связанная с наличием в природе двух типов клеточной организации – прокариот и эукариот.Прокариоты(доядерные)- это мелкие (около 1 мкм) клетки, не имеющие ядра и других органоидов, типичных для эукариот. Наследственное вещество – ДНК – лежит свободно в цитоплазме, а прочие функциональные блоки тоже представлены небольшими макромолекулярными комплексами без оболочек. К прокариотам относятся все бактерии и так называемые сине-зеленые водоросли.Эукариоты(с настоящим ядром)- крупные (10-50 и более мкм) клетки, в которых ДНК в форме хромосом заключена в ядре и большинство рабочих структур, ферментов организовано в изолированных органоидах. Изолирующую роль для ядра и органоидов выполняют такие же липидно-белковые мембраны, как и мембрана клеточной поверхности. Эукариотную организацию имеют одноклеточные простейшие (амеба, инфузория и другие) и клетки многоклеточных организмов: грибов, растений, животных, включая человека. Суть проблемы не в размерных и даже не в структурных различиях двух типов клеток, а в том, что некоторые органоиды эукариотных клеток, такие как митохондрии и хлоропласты, похожи на прокариот – бактерий и сине-зеленых водорослей. Они имеют собственную ДНК, аппарат синтеза белка (рибосомы), систему энергообеспечения и, таким образом, мало зависят от других структур клетки, в частности от ядерной ДНК. На этом основании разработана симбиотическая гипотеза о происхождении эукариотической клетки на основе симбиоза (взаимовыгодного объединения) некогда самостоятельных прокариотических клеток. В таком случае про- и эукариотические клетки не только по уровню сложности, но и по происхождению должны представлять разные – низший и высший – подуровни клеточного уровня организации.

Тканевый подуровень:

Ткань — это сово­купность клеток, сходных по строению, происхождению и выполняемой функции. В состав ткани входит также межклеточное вещество. Ткани и органы представляют основные промежуточные подуровни между клеткой и организмом. Естественно, что эти подуровни можно выделить только у многоклеточных животных, растений, грибов.

Например, у человека различают эпителиальную (покровную) ткань, мышечную, нервную и соединительную (рыхлую, плотную, хрящевую, костную, кровь и лимфу). Ткани состоят из клеток и межклеточного связующего вещества.

Органнный подуровень:

Орган — это обособленная часть организма, имеющая определен­ную форму, строение, расположение и выполняющая конкретную функцию. Орган, как правило, образован несколькими тканями, среди которых одна (реже — две) преобладает.

Органы состоят из разных тканей. Так, сердце кроме основной мышечной ткани включает рыхлую соединительную, кровь, нервные элементы и эпителиальные оболочки. Головной мозг наряду с нервными клетками содержит питающие их кровеносные сосуды, желудочки, выстланные специальным эпителием. Многие органы объединены в системы органов (пищеварительную, кровеносную и др.).

Организменный (онтогенетический) подуровень:

  • Компоненты
    • Клетка — основной структурный компонент организма. Из клеток образованы ткани и органы многоклеточного организма
  • Основные процессы
    • Обмен веществ (метаболизм)
    • Раздражимость
    • Размножение
    • Онтогенез
    • Нервно-гуморальная регуляция процессов жизнедеятельности
    • Гомеостаз

 

Организм — целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию и поддержанию гомеостаза (т. е. постоянства внутренней среды). Многоклеточный организм представляет собой совокупность тканей и органов.

Наконец,многоклеточный организм, как и отдельная клетка, представляет законченный и устойчивый уровень биологической организации.Организм, или особь, способен к самостоятельному существованию, размножению и развитию.

ПОПУЛЯЦИОННО-ВИДОВОЙ УРОВЕНЬ

  • Компоненты
    • Группы родственных особей, объединённых определённым генофондом и специфическим взаимодействием с окружающей средой
  • Основные процессы
    • Генетическое своеобразие
    • Взаимодействие между особями и популяциями
    • Накопление элементарных эволюционных преобразований
    • Осуществление микроэволюции и выработка адаптаций к изменяющейся среде
    • Видообразование
    • Увеличение биоразнообразия

 

Вид- важнейшая биологическая категория, которая определяется как совокупность особей (организмов), обладающих наследственным сходством по морфологическим, физиологическим, генетическим, эколого-географическим признакам, способных свободно скрещиваться и давать плодовитое потомство. Со времен Карла Линнея (выдающийся шведский натуралист 18 века) биологические виды обозначаются двойным наименованием на латинском языке – первое слово обозначает род, второе – вид. Например, Phaseolus vulgaris – фасоль обыкновенная, Passer domesticus – воробей домовый, Homo sapiens – человек разумный.

Главное в определении вида (его главный критерий) – способность особей скрещиваться и, более того, оставлять плодовитое потомство. В диких условиях особи разных видов не скрещиваются. Искусственно можно скрестить лошадь и осла, но их потомство – мул – бесплодно. Так что лошадь и осел – разные виды.

Каждый вид занимает на Земле определенный ареал- территорию или акваторию (эколого-географический критерий вида). Иногда это – небольшой, изолированный участок, например, Манчжурская тайга для амурского тигра. Такие виды называют эндемичными, или эндемиками. В других случаях вид распространен по всему земному шару – виды-космополиты. Чаще ареал вида бывает разорван, вид существует отдельными группировками – популяциями.

Популяция- некоторая изолированная совокупность особей одного вида, длительное время населяющая определенный ареал и способная к свободному скрещиванию. Кроме ареала популяция имеет и определенную экологическую нишу. Если ареал – это адрес популяции, то экологическая ниша – ее образ жизни: состав пищи, враги, водный режим, ярус леса и т.п. Но главное качество популяции как единицы воспроизведения и эволюции биологических видов – доступность ее особей к свободному скрещиванию, то есть свободная комбинаторика родительских генов. Постепенное расхождение генетической структуры популяций рождает новые виды. Поэтому иногда трудно провести грань между популяцией и видом, поэтому эти категории и рассматриваются в рамках одного уровня организации

Биогеоценотический (Экосистемный) уровень.

Представлен разнообразием естественных и культурных биогеоценозов во всех средах жизни

  • Компоненты
    • Популяции различных видов
    • Факторы среды
    • Пищевые сети, потоки веществ и энергии
  • Основные процессы
    • Биохимический круговорот веществ и поток энергии, поддерживающие жизнь
    • Подвижное равновесие между живыми организмами и абиотической средой (гомеостаз

Обеспечение живых организмов условиями обитания и ресурсами (пищей и убежищемБиогеоценоз — исторически сложившаяся совокупность организмов разных видов, взаимодействующая со всеми факторами их среды обитания.

Биосферный (глобальный) уровень.

Представлен высшей, глобальной формой организации биосистем — биосферой

  • Компоненты
    • Биогеоценозы
    • Антропогенное воздействие
  • Основные процессы
    • Активное взаимодействие живого и неживого вещества планеты
    • Биологический глобальный круговорот веществ и энергии
    • Активное биогеохимическое участие человека во всех процессах биосферы, его хозяйственная и этнокультурная деятельность 

Биосфера — биологическая система высшего ран­га, охватывающая все явления жизни в атмосфере, гидросфере, литосфере и объединяю­щая все экосистемы в единый комплекс. На этом уровне происходят вещественно-энергетические круговороты, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

Биологические макромолекулы, входящие в состав живых систем.

Понятие «макромолекула» совпадает с химическим определением полимера. Макромолекулы состоят из большого числа (сотен, тысяч и более) повторяющихся элементовзвеньев. Важнейшими макромолекулами, входящими в состав живых организмов, являются нуклеиновые кислоты, белки и углеводы (полисахариды). К макромолекулам можно отнести также, например, каучук — углеводород, входя­щий в состав латекса (сока дерева гевеи). Наиболее распространенными на нашей пла­нете макромолекулами являются полисахари­ды целлюлоза и хитин.

Свойства живого на различных уровнях организации.                     

Для всех уровней организации живой материи на Земле характерно единство химического и биохимического состава; обязательно присутствие основных макромолекул. Каждый уровень представляет собой целостную систему, состоящую из взаимосвязанных и взаимодействующих элементов. Наличие этого взаимодействия обеспечивает саморегуляцию системы, ее рост, развитие и общее увеличение биомассы (размножение). Наконец, на любом уровне организации живой материи мы наблюдаем процессы обмена веществ и энергии с окружающей средой, а также способность отвечать на изменения окружающего мира и приспосабливаться к ним. Конечно, клетка и экосистема поразному отвечают, например, на повышение температуры или сезонные изменения освещенности, но сам принцип реагирования (раздражимости) присущ живой материи на любой ступени ее организации.

Методы исследования живой материи         

Перечислим основные методы исследования живых объектов. Метод наблюдения и связанный с ним описательный метод основаны на сборе фактического материала. С их применения начинается большинство биологических иссле­дований. Особое значение эти методы имеют, например, для анатомических дисциплин (изучение строения организма человека, растений, животных).

Сравнительный метод позволяет, сопоставляя разные организмы, выявлять их сходство и различие. Благодаря этому методу были заложены основы систематики растений и жи­вотных, создана клеточная теория.

Исторический метод позволяет выявить закономерности появления организмов, их развития, усложнения структуры и функций. Он имеет ключевое значение для теории эволюции, эмбриологии (науки об индивидуальном развитии организмов).

Экспериментальный метод в настоящее время, пожалуй, наиболее актуален. Ученый, использующий экспериментальный метод, активно влияет на организм, помещая его в те или иные условия, оказывая на него различные воздействия и изучая ответные реакции.

Метод компьютерного моделирования незаменим для исследования биологических процессов, воссоздать которые в реальности очень сложно либо вообще невозможно. С помощью моделирования можно, например, за несколько дней оценить действие на организм сотен лекарственных препаратов и выбрать наиболее эффективный. На аналогичные экспериментальные исследования ушли бы многие месяцы.

Заключение:

Таким образом, мы видим, что вопрос о структурных уровнях в биологии имеет некоторые особенности по сравнению с его рассмотрением в физике. Эта особенность состоит в том, что изучение каждого уровня организации в биологии ставит своей главной целью объяснение феномена жизни. Действительно, если в физике деление на структурные уровни материи в достаточной степени условно (критериями являются масса и размеры), то уровни материи в биологии отличаются не столько размерами или уровнями сложности, сколько, закономерностями функционирования.

Действительно, если, например, исследователь изучил физико-химические свойства биологического объекта и его структуру, но не установил его биологического назначения в целостной системе, это будет означать, что изучен ещё один определенный объект, но не уровень живой материи.

Ещё одна особенность структуризации живой материи состоит в иерархической соподчиненности уровней. Это означает, что низшие уровни как единое целое входят в высшие. Эта концепция структуризации получила название «многоуровневой иерархической матрешки».

Важно отметить также, что число выделяемых в биологии уровней зависит от глубины профессионального изучения мира живого.

Сайттағы материалды алғыңыз келе ме?

ОСЫНДА БАСЫҢЫЗ

Бұл терезе 3 рет ашылған соң кетеді. Қолайсыздық үшін кешірім сұраймыз!