ВЛИЯНИЕ Электронный и магнитной полей на живых организмов

Под термином «биотропные параметры» понимаются физические характеристики МП, определяющие первичные, биологически значимые физико-химические и информационные механизмы действия поля, обу-словливающие формирование соответствующих реакций как отдельных органов, так и на уровне целостного организма (М. А. Шишло). К ним относятся: вид поля, индукция, энергия, градиент, вектор и частота поля, форма во времени и пространстве, экспозиция и локализация воздействия. От каждого из параметров, а также от их сочетания существенно зависит эффективность лечения того или иного заболевания.

Индукция (В) — основной параметр магнитного поля, представляет собой плотность магнитного потока (магнитный поток, приходящийся на единицу площади сечения). Индукция — величина векторная, опре-деляется модулем и направлением. Единицей измерения индукции яв-ляется тесла: 1 Тл = 1 В-с/м2.

Биологически активным является любое МП, величина которого отличается как в сторону увеличения, так и уменьшения от геомагнит-ного поля, составляющего десятки мкТл. Пороговые напряженности для различных видов МП колеблются от 3 мТл для ПМП до 0,01 мТл для ИБМП. Отмечена необходимость снижения интенсивности МП при воз-действии на уровне целостного организма. Предельно допустимый уровень величины индукции МП на производстве составляет 1…2 Тл. В серийно выпускаемой аппаратуре, предназначенной для магнитостиму-ляции, величина индукции МП находится в пределах от 1500 до 4000 мТл; для воздействия на биологические активные точки — 100 мТл; для воздействия на локальные участки частей тела человека — от 15 до 50 мТл; для воздействия на части тела и всего человека — от 0 до 5 мТл. Налицо явная тенденция снижения интенсивности МП с увеличением площади воздействия.

В зависимости от значений индукции магнитные поля, применяемые в магнитотерапии, условно подразделяют на сверхслабые — < 0,5 мТл, слабые — 0,5…50 мТл, средние — 50…500 мТл, сильные — > 500 мТл.

Наибольшее распространение в лечебной практике получили слабые МП. Если магнитная индукция не изменяется в пространстве, поле является однородным. В однородном поле все векторы магнитной ин-дукции имеют одно и то же значение и одно направление. При этом градиент магнитной индукции равен нулю. Достаточно однородными считаются поля в центральной части длинного соленоида и в центре системы катушек Гельмгольца. Такого рода поля широко используются при физиологических исследованиях, а в практике магнитотерапии их применение ограничено.

Градиент магнитной индукции есть вектор, имеющий значение 3B/3N и направленный по нормали N к поверхности равной индукции в сто-рону наибольшего возрастания магнитной индукции:

(1)

Практически gradB определяется как изменение магнитной индук-ции, приходящееся на единицу длины по каждой из координат. Как физическая величина этот показатель характеризует динамику поля и свидетельствует о его неоднородности. Единица измерения градиента магнитной индукции — тесла на метр (Тл/м).

Ряд авторов считают, что механизм дей-ствия слабых МП однозначно определяется пространственно-временны-ми градиентами поля [34], другие связывают усиление магнитобиологических эффектов с увеличением пространственно-временной неоднородности МП и при их интерпретации советуют учитывать перепад напряженности МП по площади заинтересованных структур.

Вектор магнитного поля указывает направление магнитных силовых линий. При изменении направления вектора меняется характер магнитобиологического эффекта, что, по-видимому, адекватно различному действию северного и южного полюсов постоянного магнита. Ряд ис-следователей отмечают большую активность поперечного магнитного поля, т.е. в тех случаях, когда вектор магнитного поля перпендикулярен поверхности тела человека, в отличие от продольного поля, при котором вектор магнитной индукции параллелен поверхности тела человека. Соб-ственный опыт авторов показывает, что довольно часто большей актив-ностью обладает продольное поле. И это не является противоречием, поскольку реальные искусственные МП, в особенности, создаваемые ло-кально-сосредоточенными источниками небольших габаритов, имеют смешанный характер вектора магнитной индукции, обладающего как продольной, так и поперечной составляющими. Помимо этого ряд уче-ных в своих магнитобиологических исследованиях отмечают большую активность МП с вертикальным направлением вектора, объясняя его взаимодействием с геомагнитным полем.

Частота магнитного поля является весьма важным биотропным параметром. В ходе длительной лечебной практики найдены «частотные окна», в которых магнитобиологический эффект выражен заметно более ярко. Например, в работе показано, что воздействия магнитных полей с частотой альфа-ритма электроэнцефалограммы человека (8…14 Гц) оказывают существенно более сильное влияние, чем другие частоты с той же интенсивностью. Поэтому в ряде выпускаемых магнитотерапевтических аппаратов предусмотрен режим питания с частотой 12,5 Гц. Наиболее часто в практике используются синусоидальное и пульсирующее магнитные поля с частотой промышленной сети 50 Гц. В настоящее время выпускаются приборы, имеющие набор фиксиро-ванных частот или плавно перестраиваемые по частоте. Дальнейшим развитием техники магнйтотерапии в этом смысле является создание аппаратуры, которая могла бы вырабатывать магнитные поля, синхро-низируемые основными биоритмами человека. Например, в магнитоте-рапевтическом комплексе «Аврора МК-01» (СССР), имеющем набор фиксированных частот 0,1;…100 Гц, предусмотрена возможность син-хронизации с ритмом пульса.

Форма магнитного поля во времени и пространстве. При использо-вании в качестве источника магнитного излучения одного элементарного индуктора форма поля в пространстве определяется конструкцией само-го индуктора, а во времени — формой питающего тока. В этом смысле, как уже отмечалось, предпочтительнее, чтобы индуктор вырабатывал неоднородное поле, а ток питания был импульсным. При этом усиливается общая динамика изменения магнитного потока, что и несет в себе, по-видимому, основной терапевтический эффект. Этот вывод под-тверждается также в работе. В случае использования систем общего воздействия на человека открывается возможность формирования магнитного поля требуемой конфигурации как в пространстве, так и во времени.

Экспозиция — биотропный параметр, связанный с временем одного сеанса воздействия магнитным полем и с числом сеансов. Интегрально он несет информацию о времени взаимодействия (t3KC) живого организма с искусственным магнитным полем. В соответствии с традициями клас-сической физиотерапии время сеанса устанавливается в пределах 10…30 мин ежедневно в количестве от 10 до 25 процедур. По данным многих исследователей, в том числе и авторов, физиотерапевтический эффект при воздействии магнитным полем развивается после 5…7 про-цедур, который закрепляется последующими процедурами. В целом экс-позиция устанавливается лечащим врачом соответственно индивидуаль-ным особенностям пациента, тяжести заболевания и т.п.

Локализация воздействия магнитным полем определяется, чаще всего, непосредственной областью поражения — местом расположения пато-логического очага, а также проекцией пораженного органа на поверх-ность кожи. В первую очередь это относится к устройствам локального (местного) воздействия, которое создается, как правило, одним индук-тором. Наряду с этим, терапевтический эффект может быть получен при действии МП на рефлексогенные зоны или биологически активные точки, подчас отстоящие на значительном удалении от очага патологии. Вместе с тем, поскольку организм человека состоит из тесно вза-имодействующих функциональных систем, деятельность которых регу-лируется центральной нервной системой, то можно получить ответ це-лостного организма, например, формирование адаптационных реакций активации, не только воздействием на тело пациента, но даже быстрее и эффективнее действуя переменным МП на голову (Е. В. Квакина). При действии низкочастотного переменного МП количество поглощае-мой энергии мало, поэтому существенно возрастает роль объема, взаи-модействующего с физическим фактором. М. А. Шишло считает, что «…соленоиды и магнитные установки с большими полезными объемами являются более эффективными лечебными средствами».

В магнитотерапевтических аппаратах, имеющих наборы индукторов, предусмотрены режимы, при которых осуществляется воздействие, распределенное в заданной области пространства. В некоторых системах, позволяющих осуществлять общее воздействие на весь организм чело-века, представляется возможным на фоне пространственно равномерной структуры поля формировать локально усиленные (ослаб-ленные) поля, а также неоднородности заданной формы. За-метим, что поля, характеристики которых не изменяются в пространстве, называют статическими, а поля, изменяющиеся и перемещающиеся в пространстве, называют динамическими. Большинство выпускаемых магнитотерапевтических аппаратов формируют, как правило, статичес-кие поля. Комплекс «Аврора МК-01» имеет программно-аппаратные средства для создания как статических, так и динамических полей. Воз-можное множество разновидностей пространственно-организованных искусственных МП представлено на рис. 1.

 

Рисунок 1 – Разновидности искусственных магнитных полей (в пространственной области)

Энергия магнитного поля (W) может служить обобщенным показа-телем, характеризующим воздействие МП на живой организм. Энергия магнитного поля вычисляется через его параметры:

(2)

где В — индукция магнитного поля, V — объем, занимаемый биообъ-ектом; — относительная магнитная проницаемость; 0— магнитная постоянная.

Учитывая общее время экспозиции можно определить работу А магнитного поля:

(3)

Последнее соотношение связывает основные характеристики поля (индукция, частота) и время его взаимодействия с живым организ-мом.

Затрачивается работа магнитного поля, в основном, на перемещение заряженных частиц биообъекта.

Влияние естественных электромагнитных полей на живые организмы

Систематическое воздействие различных факторов внешней среды на живые организмы способствовало созданию у них тонких механизмов адаптации, позволяющих приспосабливаться к изменяющимся условиям. Наиболее эффективно процесс формирова-ния этих механизмов запускается возмущающими влияниями, в том числе и имеющими электромагнитную природу, например, распределен-ными по всему электромагнитному спектру, включая инфранизкие час-тоты, геомагнитные и геоэлектрические поля. Поскольку независимо от природы фактора, способствовавшего их возникновению, адаптационные механизмы играют важную роль в жизнедеятельности и неспецифической резистентное™ организма, то возможность осознан-ного управления процессами их формирования постоянно привлекает внимание исследователей. Именно с этих позиций естественные и ис-кусственные магнитные и электромагнитные поля представляют собой область повышенного интереса.

Формирование вышеперечисленных эффектов, вероятно, объясня-ется тем, что ЭМП, обладая высокой избирательной проникающей спо-собностью, вызывают изменения не только в нейроглиальных клетках мозга, но при более длительных или интенсивных воздействиях способ-ны повлиять на структуру нейронов и кровеносных сосудов.

В заключение этого раздела, посвященного анализу эффектов дей-ствия ЭМП на живые организмы на различных уровнях организации: клеточном, органном, системном и в целом на функциональное состо-яние организма, можно отметить, что геомагнитные и электромагнитные поля способны оказывать влияние на жизнедеятельность организма. При этом установлено, что действие МП неоднозначно, и могут иметь место как отрицательные последствия, так и положительные результаты. Вышесказанное предопределяет два основных направления дальнейших исследований:

— необходимость тщательной проработки проблемы с позиций эко-логии;

— дальнейшее изучение возможностей использования ЭМП в прак-тической медицине.

Прогрессивное развитие этих направлений невозможно без дальней-шего продолжения фундаментальных исследований, направленных на изучение механизмов влияния ЭМП на живые системы.

Механизмы действия магнитных полей на живой организм

В экспериментальной биологии и медицинской практике накоплен громадный эмпирический опыт об эффектах ЭМП, требующий систе-матизации и теоретического осмысления для расшифровки механизмов их действия на живые объекты. Обилие гипотез по этой проблеме сви-детельствует скорее о ее нерешенности, чем о достаточном уровне по-нимания механизмов взаимодействия живого с естественными и искус-ственными магнитными полями.

В попытках добиться решения этой проблемы следует исходить из того, что организм представляет собой многоуровневую иерархическую организацию. Особенности структуры каждого из этих уровней предоп-ределяют характерную избирательность взаимодействия по различным параметрам МП. В связи с этим для осмысления механизмов действия МП на живые системы предлагается выделить следующие уровни, на которых это взаимодействие прослеживается достаточно явно.

  1. Ядерно-молекулярный уровень, включающий подуровни:

— электронно-ядерный;

— ионно-молекулярный.

  1. Цитохимический уровень, в котором следует выделить:

— субклеточные структуры;

— структурные образования, обеспечивающие ионное равновесие в клетках и тканевой жидкости;

— клеточные мембраны;

— биополимеры, определяющие вязкость и способность изменять аг-регатное состояние жидких сред организма.

  1. Тканевый уровень, на котором воздействие МП будет предопреде-ляться:

— особенностями морфологии данной ткани;

— функциональной предназначенностью тканей;

— преобладающим характером метаболизма.

  1. Органный уровень (воздействие на отдельные органы).
  2. Системный уровень, включающий:

— центральную, периферическую и вегетативную нервные системы;

— сенсорные системы;

— сердечно-сосудистую систему;

— эндокринную систему;

— дыхательную, пищеварительную и выделительную системы;

— систему крови;

— опорно-двигательный аппарат и др.

  1. Межсистемный уровень, описывающий взаимодействие между от-дельными системами организма.
  2. Общесистемный уровень, формирующийся при интегрировании вза-имодействий между всеми системами.
  3. Межличностный уровень, включающий:

— воздействие одного организма на другой через собственное излуче-ние ЭМП;

— взаимодействие живых организмов во внешнем ЭМП.

Электронно-ядерный уровень. Изучение организма на квантовомуровне показывает, что химические реакции, протекающие в условиях in vivo, имеют много общего с «пробирочными» реакциями, а механизмы действия МП на живой организм основаны на адекватном изменении энергии химических связей в биологических процессах. Результатом хи-мических реакций, как правило, является превращение молекул одних веществ в другие за счет перестройки электронных оболочек ядер. Физические влияния МП связаны с вероятностью протекания элементарных химических актов, когда в результате химических превращений вследствие распаривания электронов, появляются свободные радикалы. Радикальные пары могут существовать в состоянии с общим спином 8=0 (синглетное состояние) и в состоянии с общим спином 5=1 (три-плетное состояние). Переход между различными спиновыми состояния-ми пары возможен в случае воздействия внешним магнитным полем, тем самым изменяется вероятность течения химических реакций и, как следствие, имеет место проявление тех или иных магнитобиологических эффектов. Так, в работе рассматривается влияние постоянного МП на перенос нервного импульса по седалищному нерву человека с точки зрения гипотезы, в основе которой лежит влияние постоянного МП на спиновые эффекты кинетики ионных каналов.

И, тем не менее, несмотря на обилие литературы, описывающей влияние МП на биохимические процессы, в частности, на активность ферментов, концентрацию продуктов химических реакций, данные из-менения могут оказаться следствием совершенно иного, неизвестного механизма воздействия МП.

Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-)излучение (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Характеристики электромагнитного излучения

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света.[1] В большинстве случаев (обычно) скорость — и групповая, и фазовая — распространения электромагнитного излучения в веществе отличается от таковых в вакууме очень незначительно (на доли процента; см.: Показатель преломления).

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определенные более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и ее разделы) и радиофизика. Жестким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий[2]; в соответствии с современными представлениями (Стандартная модель) при высоких энергиях электродинамика перестает быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при еще более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.

Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной[3] из завершенных и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

  • наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.
  • электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.
  • Диапазоны электромагнитного излучения
  • Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения (в вакууме) постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.
Название диапазонаДлины волн, λЧастоты, νИсточники
РадиоволныСверхдлинныеболее 10 кмменее 30 кГцАтмосферные явления. Переменные токи в проводниках и электронных потоках (колебательные контуры).
Длинные10 км — 1 км30 кГц — 300 кГц
Средние1 км — 100 м300 кГц — 3 МГц
Короткие100 м — 10 м3 МГц — 30 МГц
Ультракороткие10 м — 1 мм30 МГц — 300 ГГц[4]
Инфракрасное излучение1 мм — 780 нм300 ГГц — 429 ТГцИзлучение молекул и атомов при тепловых и электрических воздействиях.
Видимое (оптическое) излучение780—380 нм429 ТГц — 750 ТГц
Ультрафиолетовое380 — 10 нм7,5×1014 Гц — 3×1016 ГцИзлучение атомов под воздействием ускоренных электронов.
Рентгеновские10 — 5×10−3 нм3×1016 — 6×1019 ГцАтомные процессы при воздействии ускоренных заряженных частиц.
Гаммаменее 5×10−3 нмболее 6×1019 ГцЯдерные и космические процессы, радиоактивный распад.

РЕФЕРАТ

I. Введение

Все многообразие живого на нашей планете возникло, эволюционировало и ныне существует благодаря непрерывному взаимодействию с различными факторами внешней среды, приспосабливаясь к их влиянию и изменениям, используя их в процессах жизнедеятельности. И большинство этих факторов имеют именно электромагнитную природу. На протяжении всей эпохи эволюции живых организмов электромагнитные излучения существуют в среде их обитания – биосфере. Учёные последовательно обнаруживали всё новые природные электромагнитные излучения в различных диапазонах электромагнитного спектра.

Электромагнитные поля и излучения буквально пронизывают всю биосферу Земли, поэтому можно полагать, что все диапазоны естественного электромагнитного спектра сыграли какую-то роль в эволюции организмов, и что это как-то отразилось на процессах их жизнедеятельности.

Однако, с развитием цивилизации, существующие естественные поля дополнились различными полями и излучениями антропогенного происхождения, и они играют важную роль для всего живого на Земле. Человек при помощи радиотехнических и радиоэлектронных приборов создал невидимую электромагнитную паутину, в которой мы все находимся. Особенно сильно она разрослась в последние годы. Мощные линии электропередач высокого и сверхвысокого напряжения, не менее мощные и многочисленные радио- и телепередающие станции, космические ретрансляторы – все они влияют на общую картину воздействия электромагнитных полей. И чем больше мы окружаем себя ими, тем важнее становится для нас узнать о том, как действуют на все живое созданные природой и нами самими электромагнитные поля.

II. Действие электромагнитных полей

В СССР широкие исследования электромагнитных полей были начаты в 60-е годы. Был накоплен большой клинический материал о неблагоприятном действии магнитных и электромагнитных полей, было предложено ввести новое нозологическое заболевание “Радиоволновая болезнь” или “Хроническое поражение микроволнами”. В дальнейшем, работами ученых в России было установлено, что, во-первых, нервная система человека, особенно высшая нервная деятельность, чувствительна к электромагнитному полю, и, во-вторых, что электромагнитное поле обладает так называемым информационным действием при воздействии на человека в интенсивностях ниже пороговой величины теплового эффекта. Результаты этих работ были использованы при разработке нормативных документов в России. В результате нормативы в России были установлены очень жесткими.

Биологическое действие электромагнитных полей

Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности ЭМП во всех частотных диапазонах. При относительно высоких уровнях облучающего ЭМП современная теория признает тепловой механизм воздействия. При относительно низком уровне ЭМП (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) принято говорить о нетепловом или информационном характере воздействия на организм. Механизмы действия ЭМП в этом случае еще мало изучены.

Многочисленные исследования в области биологического действия ЭМП позволят определить наиболее чувствительные системы организма человека: нервная, иммунная, эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население.

Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания.

Электромагнитные поля могут быть особенно опасны для детей, беременных (эмбрион), людей с заболеваниями центральной нервной, гормональной, сердечно-сосудистой системы, аллергиков и людей с ослабленным иммунитетом.

Влияние на нервную систему

Большое число исследований, выполненных в России, и сделанные монографические обобщения, дают основание отнести нервную систему к одной из наиболее чувствительных систем в организме человека к воздействию ЭМП. На уровне нервной клетки, структурных образований по передачи нервных импульсов (синапсе), на уровне изолированных нервных структур возникают существенные отклонения при воздействии ЭМП малой интенсивности. Изменяется высшая нервная деятельность, память у людей, имеющих контакт с ЭМП. Эти лица могут иметь склонность к развитию стрессорных реакций. Определенные структуры головного мозга имеют повышенную чувствительность к ЭМП. Изменения проницаемости гемато-энцефалического барьера может привести к неожиданным неблагоприятным эффектам. Особую высокую чувствительность к ЭМП проявляет нервная система эмбриона.

Влияние на иммунную систему

В настоящее время накоплено достаточно данных, указывающих на отрицательное влияние ЭМП на иммунологическую реактивность организма. Результаты исследований ученых России дают основание считать, что при воздействии ЭМП нарушаются процессы иммуногенеза, чаще в сторону их угнетения. Установлено также, что у животных, облученных ЭМП, изменяется характер инфекционного процесса – течение инфекционного процесса отягощается. Возникновение аутоиммунитета связывают не столько с изменением антигенной структуры тканей, сколько с патологией иммунной системы, в результате чего она реагирует против нормальных тканевых антигенов. В соответствии с этой концепцией, основу всех аутоиммунных состояний составляет в первую очередь иммунодефицит по тимус-зависимой клеточной популяции лимфоцитов. Влияние ЭМП высоких интенсивностей на иммунную систему организма проявляется в угнетающем эффекте на Т-систему клеточного иммунитета. ЭМП могут способствовать неспецифическому угнетению иммуногенеза, усилению образования антител к тканям плода и стимуляции аутоиммунной реакции в организме беременной самки.

Влияние на эндокринную систему и нейрогуморальную реакцию

В работах ученых России еще в 60-е годы в трактовке механизма функциональных нарушений при воздействии ЭМП ведущее место отводилось изменениям в гипофиз-надпочечниковой системе. Исследования показали, что при действии ЭМП, как правило, происходила стимуляция гипофизарно-адреналиновой системы, что сопровождалось увеличением содержания адреналина в крови, активацией процессов свертывания крови. Было признано, что одной из систем, рано и закономерно вовлекающей в ответную реакцию организма на воздействие различных факторов внешней среды, является система гипоталамус-гипофиз-кора надпочечников. Результаты исследований подтвердили это положение.

Влияние на половую функцию

Нарушения половой функции обычно связаны с изменением ее регуляции со стороны нервной и нейроэндокринной систем. С этим связанаы результаты работы по изучению состояния гонадотропной активности гипофиза при воздействии ЭМП. Многократное облучение ЭМП вызывает понижение активности гипофиза

Любой фактор окружающей среды, воздействующий на женский организм во время беременности и оказывающий влияние на эмбриональное развитие, считается тератогенным. Многие ученые относят ЭМП к этой группе факторов.

Первостепенное значение в исследованиях тератогенеза имеет стадия беременности, во время которой воздействует ЭМП. Принято считать, что ЭМП могут, например, вызывать уродства, воздействуя в различные стадии беременности. Хотя периоды максимальной чувствительности к ЭМП имеются. Наиболее уязвимыми периодами являются обычно ранние стадии развития зародыша, соответствующие периодам имплантации и раннего органогенеза.

Было высказано мнение о возможности специфического действия ЭМП на половую функцию женщин, на эмбрион. Отмечена более высокая чувствительность к воздействию ЭМП яичников нежели семенников. Установлено, что чувствительность эмбриона к ЭМП значительно выше, чем чувствительность материнского организма, а внутриутробное повреждение плода ЭМП может произойти на любом этапе его развития. Результаты проведенных эпидемиологических исследований позволят сделать вывод, что наличие контакта женщин с электромагнитным излучением может привести к преждевременным родам, повлиять на развитие плода и, наконец, увеличить риск развития врожденных уродств.

Другие медико-биологические эффекты

Как уже говорилось выше, с начала 60-х годов в СССР были проведены широкие исследования по изучению здоровья людей, имеющих контакт с ЭМП на производстве. Результаты клинических исследований показали, что длительный контакт с ЭМП в СВЧ диапазоне может привести к развитию заболеваний, клиническую картину которого определяют, прежде всего, изменения функционального состояния нервной и сердечно-сосудистой систем. Было предложено выделить самостоятельное заболевание – радиоволновая болезнь. Это заболевание, по мнению авторов, может иметь три синдрома по мере усиления тяжести заболевания:

– астенический синдром;

– астено-вегетативный синдром;

– гипоталамический синдром.

Наиболее ранними клиническими проявлениями последствий воздействия ЭМ-излучения на человека являются функциональные нарушения со стороны нервной системы, проявляющиеся прежде всего в виде вегетативных дисфункций неврастенического и астенического синдрома. Лица, длительное время находившиеся в зоне ЭМ-излучения, предъявляют жалобы на слабость, раздражительность, быструю утомляемость, ослабление памяти, нарушение сна. Нередко к этим симптомам присоединяются расстройства вегетативных функций. Нарушения со стороны сердечно-сосудистой системы проявляются, как правило, нейроциркуляторной дистонией: лабильность пульса и артериального давления, наклонность к гипотонии, боли в области сердца и др. Отмечаются также фазовые изменения состава периферической крови (лабильность показателей) с последующим развитием умеренной лейкопении, нейропении, эритроцитопении. Изменения костного мозга носят характер реактивного компенсаторного напряжения регенерации. Обычно эти изменения возникают у лиц по роду своей работы постоянно находившихся под действием ЭМ-излучения с достаточно большой интенсивностью. Работающие с МП и ЭМП, а также население, живущее в зоне действия ЭМП жалуются на раздражительность, нетерпеливость. Через 1-3 года у некоторых появляется чувство внутренней напряженности, суетливость. Нарушаются внимание и память. Возникают жалобы на малую эффективность сна и на утомляемость. Учитывая важную роль коры больших полушарий и гипоталамуса в осуществлении психических функций человека, можно ожидать, что длительное повторное воздействие предельно допустимых ЭМ-излучения может повести к психическим расстройствам.

Основные источники ЭМП и способы защиты от их вредного действия

Сегодня в мире существует множество источников электромагнитного излучения различной мощности. Каких-либо однозначных мер защиты или ограничения их влияния не существует, можно лишь ограничить себя от воздействия. В этой главе рассматриваются основные источники, общие и специфические меры защиты от вредного действия ЭМП.

В городах присутствует достаточно высокий уровень излучения от электрического транспорта. Разработаны специальные нормы и ГОСТы для уменьшения вредного воздействия излучения на население. В основном, все они сводятся к «защите расстоянием», то есть организацией санитарной зоны около источников ЭМП, какими могут быть трамвайные и троллейбусные троллеи и линии метрополитена или электропоездов. Те же меры защиты должны соблюдаться вблизи линий электропередач. В зависимости от мощности ЛЭП, ширина санитарной зоны увеличивается.

Наиболее мощное ЭМП создается теле- радиовещательными станциями. Иногда они располагаются непосредственно в жилой зоне. В таких случаях необходимо применение всех способов защиты. Здесь основной принцип обеспечение безопасности – соблюдение установленных Санитарными нормами и правилами предельно допустимых уровней электромагнитного поля.

Наиболее общими являются следующие источники электромагнитного излучения.

Электропроводка

Эта неотъемлемая часть жизнеобеспечения населения вносит наибольший вклад в электромагнитную обстановку жилых помещений. К электропроводке относят как кабельные линии, подводящие электричество ко всем квартирам и внутри их, так и распределительные щиты и трансформаторы. В помещениях смежных с этими источниками уровень магнитного поля обычно повышен, а уровень электрического поля не высокий и не превышает допустимых значений.

Рекомендации по защите

В данном случае используются только предупредительные меры защиты, такие как:

  • исключение длительного пребывания в местах с повышенным уровнем магнитного поля промышленной частоты;
  • грамотное расположение мебели для отдыха в жилом помещении, обеспечивающие расстояние два-три метра до распределительных щитов и силовых кабелей;
  • при установке полов с электроподогревом останавливать свой выбор системы на той, которая обеспечивает более низкий уровень магнитного поля;
  • при наличии в помещении неизвестных кабелей или электрических шкафов, щитков обеспечить наибольшее удаление от них жилой зоны.

Бытовые электроприборы

Естественно, что все приборы, работающие на электрическом токе, являются источниками электромагнитных полей. Наиболее сильными источниками ЭМП являются микроволновые и электрические печи, кухонные вытяжки, пылесосы и холодильники с системой «no frost». Реально излучаемое ими поля разнится в зависимости от конкретных моделей, но следует заметить, что, чем выше мощность прибора, тем и магнитное поле, создаваемое им, выше. Значение же электрического поля гораздо меньше предельно допустимых значений. Наибольшее магнитное поле излучают микроволновые печи.

Рекомендации по защите

  • При приобретении бытовой техники необходимо обращать внимание на отметку о соответствии прибора требованиям «Межгосударственных санитарных норм допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях»;
  • использование приборов с меньшей мощностью;
  • место отдыха необходимо достаточное его удаление от бытовых приборов излучающих достаточно большой уровень магнитного поля, таких как холодильники «no frost», некоторые типы полов с электрическим подогревом, телевизоры, нагреватели, блоки питания и зарядные устройства;
  • размещение электрических приборов на некотором расстоянии друг от друга и удаление их от места отдыха.

Средства сотовой связи

Достаточно актуальным является вопрос биологической безопасности сотовой связи. Несмотря на его многочисленные исследования, однозначного ответа ученые так и не дали. Можно отметить лишь одно за все время существования сотовой связи ни один человек не получил явного ущерба здоровью из-за ее использования.

Сотовая связь обеспечивается радиопередающими базовыми станциями и мобильными радиотелефонами пользователей-абонентов.

Среди установленных в одном месте антенн базовой станции имеются как передающие, так и приемные антенны, которые не являются источниками ЭМП. Исходя из технологических требований построения системы сотовой связи, диаграмма направленности антенн в вертикальной плоскости рассчитана таким образом, что основная энергия излучения (более 90 %) сосредоточена в довольно узком “луче”. Он всегда направлен в сторону от сооружений, на которых находятся антенны БС, и выше прилегающих построек, что является необходимым условием для нормального функционирования системы.

Как и говорилось выше, влияние сотовых телефонов на здоровье человека не выявлено, но что организм “откликается” на наличие излучения сотового телефона. Таким образом, можно только порекомендовать многочисленным пользователям сотовой связи соблюдать некоторые рекомендации.

Рекомендации по защите

  • использовать сотовый телефон в случаях необходимости;
  • не разговаривать непрерывно более трех-четырех минут;
  • не допускать использования сотового телефона детьми;
  • выбирать телефон с меньшей максимальной мощностью излучения;
  • использовать в автомобиле комплект hands-free, размещая его антенну в геометрическом центре крыши.

Персональные компьютеры

Персональные компьютеры стали частью жизни многих людей. Некоторые используют их только на работе или дома, а некоторые проводят большую часть своего времени за компьютером. Влияние компьютеров однозначно сказывается на здоровье человека, влияя как на общее состояние, так и на зрение и другие органы. Но, это влияние складывается множеством разнообразных факторов, таких как эргономика устройств персонального компьютера и рабочего места пользователя, освещенность и зашумленность помещения, электромагнитное поле, создаваемое компьютером.

Основным источником ЭМП в персональном компьютере является монитор на электроннолучевой трубке. По сравнению с ним, все остальные устройства ПК производят минимальное излучения, за исключением, быть может, источника бесперебойного питания. Современные технологии позволяют отказаться от использования мониторов на электроннолучевой трубке и использовать жидкокристаллические мониторы, которые как техническим параметрам, так и параметрам воздействия на здоровье человека значительно отличаются в лучшую сторону.

Несколько лет назад широко применялись защитные экраны для мониторов, но сегодня надобность в них почти отпала, так как производители максимально снизили уровень излучения экрана и, во многих случаях, защитный экран монтируется непосредственно в корпус монитора. Но, все-таки, при использовании монитора на электроннолучевой трубке следует соблюдать некоторые меры предосторожности, такие как:

  • размещение монитора таким образом, чтобы задняя его панель (область наибольшего излучения) была обращена от пользователя и окружающих его людей. Эта рекомендация наиболее актуальна для случаев, когда в одном помещении располагается несколько мониторов;
  • достаточная освещенность рабочего места. Наиболее подходящим осветителем в данном случае является небольшая люминесцентная лампа;
  • кратковременные перерывы в процессе работы.

Заключение

Влияние электромагнитных полей на здоровье человека – это исследуемая задача науки. В связи со стремительным ростом числа технологий и приборов избежать влияния ЭМП в современном мире практически невозможно. Различные организации как государственные, так и международные разработали множество стандартов и требований для предотвращения какого бы то не было влияния электромагнитного поля на человека и, почти вся продаваемая техника, соответствует этим требованиям.

Таким образом, можно заключить, что соблюдение санитарных и гигиенических норм при градостроительстве и следование необременительным рекомендациям по использованию бытовых приборов практически нивелирует влияние электромагнитных полей на человека. Хотя этот вопрос должен и будет исследоваться далее.

Использованные источники

  1. Ромашев Д.К Реферат «Электромагнитное поле и его влияние на здоровье человека» – СПб: СПГТУ – 2001 – 21
  2. Никитина Е.М. Реферат «Эргономика – защита пользователей от негативных воздействий электромагнитных полей дисплея» – М.: 1998 – 10
  3. Зинковская М. Курсовая работа «Влияние электро-магнитных полей на живые организмы» – Днепропетровск: ДНУ – 2001 – 19
  4. Ратынский М.А. Основы сотовой связи – М.: Радио и связь – 2000 – 248
  5. http://www.pole.com.ru/: Центр электромагнитной безопасности [9.10.03]

Использование ямр и эпр в медицинских исследованиях

Ядерный магнитный резонанс (ЯМР)

Приборы и программное обеспечение для ЯМР-спектроскопии

Подразделение ЯМР Bruker BioSpin производит самые современные ЯМР-спектрометры для химии, биохимии, медицины, фармацевтики и материаловедения. У нас есть региональные представительства по всему миру, в которых работают менеджеры по продажам, ученые-специалисты по различным приложениям и сервисные инженеры. Наши центры технической поддержки расположены в удобных местах, что позволяет нам реагировать на запросы клиентов своевременно и эффективно.

Электронный парамагнитный резонанс (ЭПР)

Продукты и решения

Компания Bruker BioSpin – ведущий мировой поставщик оборудования для ЭПР-спектроскопии. Электронный парамагнитный резонанс (ЭПР), также называемый электронным спиновым резонансом (ЭСР), является единственным методом прямого обнаружения парамагнитных частиц.

 

Метод ЭПР применяется во множестве областей, начиная с контроля качества и заканчивая молекулярными исследованиями в материаловедении, структурной биологии и квантовой физике. ЭПР-эксперименты уже дали бесценную информацию о строении металлопротеинов, а также о структурах и процессах, задействованных при фотосинтезе.

 

Bruker BioSpin предлагает три линейки ЭПР-спектрометров: ELEXSYS, EMX plus/micro и e-scan, чтобы обеспечить эффективный инструментарий для всех возможных практических задач в любой из сфер применения ЭПР.

 

Основными научными направлениями на кафедре и в отделе квантовых магнитных явлений, по которым выполняются магистерские диссертации являются:

  • Ядерная магнитная релаксация в растворах электролитов;
  • ЯМР-томография (интроскопия);
  • Ядерный магнитный резонанс в земном поле;
  • Квантовая магнитометрия в археологии;
  • ЯМР в жидких кристаллах;
  • ЯМР в пористых средах;
  • Ядерный магнитный резонанс в твердых телах;
  • Ядерный магнитный резонанс в магнитоупорядоченных веществах;
  • Электронный парамагнитный резонанс в сильных и слабых магнитных полях.

Выпускники кафедры работают не только в России и СНГ, а также в Швеции, США, Новой Зеландии, Германии, Франции, Италии, занимая должности от высококвалифицированного оператора современных радиоспектрометров, до профессора.

На кафедре работает 2 доктора и 12 кандидатов наук. Сотрудниками кафедры и отдела опубликованы 7 монографий и учебных пособий, а результаты научной работы коллектива нашли отражение в нескольких сотнях статей в ведущих российских и зарубежных журналах, в частности: J. Magn.Resonance, Molecular Physics, Molec. Liquids, Phys. Stat. Sol, J. Chem. Phys, Chem. Phys, Phys. Rev, Ferroelectrics.

В настоящее время исследования проводятся по двум плановым темам НИИ физики, четырем грантам РФФИ, трем грантам Минобразования РФ и трем грантам Федеральной целевой программы «Интеграция». Кроме этого, ряд исследований выполняется в содружестве с университетами и исследовательскими центрами Германии (г. Гамбург, г. Берлин), Финляндии (г. Турку), Швеции (г. Стокгольм), Италии (г. Флоренция), Японии (г. Осака), Испании (г. Барселона), Франции (г. Гренобль). В коллективе проходили стажировку и учились в аспирантуре специалисты из Китая, ГДР, Вьетнама, Польши, Кубы, Венгрии, Индии, Кореи и других стран.

Многие работы ученых кафедры квантовых магнитных явлений носят приоритетный характер. Впервые в Ленинграде и одними из первых в СССР в 1953 г. сотрудники лаборатории квантовой радиофизики разработали и создали спектрометры ЯМР высокого разрешения для исследования жидкостей (П.М. Бородин), в 1958 г. — спектрометр широких линий для исследования твердых тел (В.В. Москалев, А.Н. Александров), а затем, в 1960 г. — спектрометр ядерного квадрупольного резонанса (В.С. Гречишкин). В 1959 г. были введены в действие импульсные ядерно-резонансные релаксометры на основе так называемого спинового эха. Релаксометр в магнитном поле Земли был одним из первых в мире (Ю.С. Чернышев), а когерентный сильнопольный релаксометр был создан В.И. Чижиком впервые в СССР (до этого в г.Казани в 1958 г. был изготовлен лишь некогерентный вариант прибора). Впервые в СССР в 1953 г. получен сигнал ЯМР в земном поле и начата работа по созданию приборов различного целевого назначения. В 1958 г. был создан оригинальный квантовый генератор, работающий в магнитном поле Земли на частоте квантовых переходов ядер водорода воды.

Сотрудниками лаборатории впервые в мировой практике произведено фурье-преобразование сигнала свободной индукции ядер (Ф.И. Скрипов, А.В. Мельников, А.А. Морозов, 1959 г.) для получения спектров ЯМР, которое в настоящее время используется во всех современных ЯМР- и ЭПР-спектрометрах и ЯМР-томографах.

В период 1965—1985 гг. В.И. Чижик разработал метод определения координационных чисел ионов и скоростей переориентации молекул в различных подструктурах растворов электролитов на основе детального анализа концентрационных и температурных зависимостей скоростей ядерной магнитной релаксации. В результате им были сформулированы закономерности построения гидратных оболочек ионов. В ходе исследований был также внесен существенный вклад в разработку моделей ядерной магнитной релаксации.

С 1970 г. проводятся исследования особенностей ЯМР в жидких кристаллах. Вначале основным направлением была разработка методов интерпретации спектров ЯМР в этих объектах, причем одним из важнейших результатов следует признать развитие метода расчета спектров на основе полного (но видоизмененного) дипольного гамильтониана для многоспиновых систем. В настоящее время интенсивно развиваются релаксационные методы изучения жидких кристаллов с использованием быстрого циклирования магнитного поля (в мире имеется лишь несколько спектрометров ЯМР подобного типа). Исследования жидких кристаллов методом ЯМР успешно продолжаются кандидатами наук С.В. Двинских и А.В. Комолкиным.

Исследование микроструктуры и динамики твердых тел — одно из традиционных направлений кафедры (В.С. Касперович, В.В. Москалев, В.В. Матвеев, Н.А. Григорьева, М.Г. Шеляпина). Ядерный магнитный резонанс в магнитоупорядоченных веществах (ферромагнетиках, ферритах, антиферромагнетиках) имеет две основные особенности: во-первых, гигантское постоянное магнитное поле на ядрах определяется свойствами самого вещества и прежде всего свойствами электронных оболочек парамагнитных ионов; во-вторых, переменное магнитное поле, действующее на ядра, по своей величине сильно отличается от внешнего переменного поля и может быть разным для ядер, расположенных в разных местах образца. В стенах СПбГУ выполнены приоритетные работы по изучению влияния распределения коэффициента усиления на сигналы свободной индукции ядер и спинового эха (В.В. Москалев). С 1980 г. В.С. Касперович ведет интенсивные исследования в области применения ЯМР для определения степени упорядоченности в твердых растворах.

В 60-х годах в лаборатории НИИФ созданы уникальные установки для регистрации спектров ЯМР (В.В. Фролов) и ЭПР (В.С. Баранов) в слабых и промежуточных магнитных полях. В настоящее время ведутся исследования с целью разработки ЯМР-интроскопа (томографа) в относительно слабых магнитных полях.

Одновременно с научными исследованиями преподаватели и научные сотрудники активно участвовали в разработке практических приложений ЯМР и ЭПР. В частности ЯМР в земном поле используется для археологического поиска. Так, уже в 1958 г. в археологической экспедиции АН СССР на Чудском озере в районе места Ледового побоища сотрудники кафедры (рук. П.М. Бородин) и студенты 4 курса участвовали в проведении подводного магнитометрического поиска доспехов и оружия рыцарей Тевтонского ордена. Затем были многие другие археологические экспедиции: в Крыму, Армении, в Псковской обл., под Великим Новгородом на Рюриковом Городище, а также в Дании, Египте и других местах.

error: Материал көшіруге болмайды!