Физические основы воздействия звука Применение ультразвуковых исследований в медицине

Клетка представляет из себя минимальный биологический объект [2,3] , можно сказать, биологический атом, все ткани и органы живого организма состоят из различных клеток. Несмотря на огромное разнообразие различных видов клеток, во всех них можно выделить много общих черт. Прежде всего, это общая структура (приведена на ри.1.1.1): любая клетка состоит из некоторого содержимого, отделенного от внешней среды клеточной мембраной – тонким слоем макромолекул, защищающим клетку и обеспечивающим ее обмен со внешним миром. Поверхность мембраны не является сплошной, в ней имеется множество каналов, обеспечивающих пропускание различных веществ – в основном, ионов легких металлов. Различные органические соединения, расположенные на внешней поверхности мембраны, необходимы для регулирования проводимости каналов и всего процесса жизнедеятельности клетки. Внутри клетки в некотором растворе, называемом цитоплазмой, располагаются различные органоиды – сложные комплексы, выполняющие каждый свою функцию. Среди них важнейшими являются ядро и ядрышко клетки, вакуоли, комплекс Гольджи и другие. Только правильная согласованная работа всех органоидов обеспечивает нормальное функционирование клетки как целого. Для этого необходимо поддерживать определенный состав цитоплазмы, концентрации различных веществ в ее растворе должны находиться в некоторых допустимых пределах.

Изменение свойств мембраны под действием ультразвука обусловлено по большей части «отрыванием» мощным излучением макромолекул и молекулярных комплексов со внешней поверхности мембраны. Оторванные соединения растворяются в окружающей среде и могут снова «вернуться» на свое прежнее место через некоторое время после прекращения ультразвукового воздействия. Оставшись без важных составляющих, мембранные каналы сильно изменяют свою проводимость и иные свойства, мембрана функционирует аномально.

Следующее важное следствие действия ультразвука – изменение концентрации различных веществ в составе цитоплазмы. Как было сказано выше, клетка – не замкнутая система, она постоянно находится в обмене веществом и энергией с окружающей средой. Так, каждое вещество, растворенное в цитоплазме, постоянно вытекает из клетки по мембранным каналам и, с другой стороны, поступает обратно в клетку из окружающей среды по ним же. Равновесная концентрация определяется, как правило, равновесием этих двух процессов. В простейшем приближении можно считать, что поток каждого вещества складывается из двух составляющих [4]: j = j mem +j diff , где j mem – ток через мембранные каналы, определяемый только свойствами мембраны, а j diff – диффузионный ток, определяемый уравнением диффузии: j diff = D (Ci n – Cout) / h, где D – коэффициент диффузии, h – толщина мембраны, Cin и Cout – концентрации вещества соответственно внутри и вне клетки. При достаточно мощном ультразвуке могут изменяться, как было сказано выше, свойства мембраны, т.е. величины jmem и D. Это, 6 очевидно, приведет к изменению равновесной концентрации вещества внутри клетки. Но и менее интенсивный ультразвук может приводить к тому же результату. Это происходит по следующей причине: акустическая волна создает микровихри в окружающей клетку среде, обеспечивая эффективное перемешивание раствора. Если до воздействия ультразвукового излучения клетку окружал некоторый примембранный слой, в котором из-за диффузии концентрация веществ была ближе к внутриклеточной. Перемешивание уничтожает этот слой и выравнивает концентрации веществ во всем растворе, что увеличивает jdiff. Таким образом, воздействие ультразвука приближает концентрацию веществ в цитоплазме, особенно ионов легких металлов, к их концентрации вне клетки. Это делает клетку более зависимой от состава внешней среды, а также может нарушить внутренние процессы жизнедеятельности [4,5]. Нарушение внутреннего состава клетки и, как следствие, процессов ее жизнедеятельности, является наиболее глубоким и долгосрочным изменением. Последствия такого рода могут оставаться в силе по прошествии нескольких часов, а то и дней после окончания воздействия ультразвука.

  1. бъективные и субъективные характеристики звука.

Само слово «звук» отражает два различных, но взаимосвязанных понятия: 1)звук как физическое явление; 2)звук – то восприятие, которое испытывает слуховой аппарат (человеческое ухо) и ощущения, возникающие у него при этом. Соответственно характеристики звука делятся на объективные, которые могут быть измерены физической аппаратурой, и субъективные, определяемые восприятием данного звука человеком.

К объективным (физическим ) характеристикам звука относятся характеристики, которые описывают любой волновой процесс: частота, интенсивность и спектральный состав. В таблицу 3 включены сравнительные данные объективных и субъективных характеристик.

Таблица 3.

Субъективные

Характеристики

Объективные характеристики
Высота звукаВысота звука определяется частотой

волны

Тембр (окраска звука)Тембр звука определяется его спектром
Громкость (сила звука)Сила звука определяется нтенсивностью волны (или квадратом ее амплитуды)

Остановимся на некоторых определениях.

Частота звука измеряется числом колебаний частиц среды, участвующих в волновом процессе, в 1 секунду.

Интенсивность волны измеряется энергией, переносимой волной в единицу времени через единичную площадь (расположенную перпендикулярно направлению распространению волны).

Спектральный состав (спектр) звука указывает из каких колебаний состоит данный звук и как распределены амплитуды между отдельными его составляющими.

Различают сплошные и линейчатые спектры. Для субъективной оценки громкости используются величины, называемые уровнем силы звука и уровнем громкости.

  1. Физические параметры ультразвука

 

В физиотерапии обычно применяют ультразвуковые волны с частотой 0,8 – 3 МГц. Большинство серийных ультразвуковых терапевтических аппаратов работают на одной из фиксированных частот этого диапазона, чаще всего – на 0,88 МГц.

Важной физической характеристикой звуковых колебаний является амплитуда волны, или амплитуда смещения. Амплитудой волны называется максимальное смещение колеблющихся частиц среды от положения равновесия. Мощность звука при одной и той же частоте зависит от амплитуды колебания звучащего тела. Тело, совершающее колебания с большей амплитудой, будет вызывать более резкое изменение давления среды, и звук будет сильнее.

Скорость, с которой частицы среды колеблются около среднего положения, называется колебательной.

Колебательная скорость измеряется в м/с или см/с.

В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной ее затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент  и добротность (Q).
Коэффициент затухания отражает быстроту убывания амплитуды с течением времени.

Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания.

Добротность системы – это величина, равная числу полных колебаний, соответствующих уменьшению амплитуды в е раз.

При добротности, превышающей несколько десятков, частота затухающих колебаний приближается к собственной частоте колебаний без потерь. Добротность кварцевой пластинки, употребляемой в качестве излучателя ультразвуковых колебаний, равна 100000.

Если колебания совершаются с потерями, то убыль энергии системы равна той энергии, которую поглощает активное сопротивление в единицу времени. При этом надо иметь в виду, что активное сопротивление обусловлено трением, излучением акустических волн и другими потерями. Соотношение полной энергии (Wп) колебания и потери энергии (Wд) за период (энергия диссипации за период) выражается следующим уравнением:

Wп/Wд= Q/2

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.
При частотах воздействия, значительно меньших резонансных, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.
Важным параметром является скорость распространения ультразвуковой энергии в среде. Колебательное движение передается от одной частицы к другой не мгновенно, а с некоторой скоростью. Таким образом, ультразвуковые волны в тканях организма распространяются с конечной скоростью, определяющейся упругими свойствами среды и ее плотностью. Скорость ультразвука в жидких и твердых телах значительно выше, чем в воздухе, где она приблизительно равна 330 м/с. В воде скорость ультразвука при 20оС примерно равна 1500 м/с, в сыворотке крови – 1520 м/с, в мягких тканях организма с плотностью среды около 1060 кг/м3 – 1540 м/с, в костных тканях – 3350 м/с.

Свойство среды проводить акустическую энергию , в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объемной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости ее частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разряжения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды  на скорость (с) распространения в ней ультразвуковых волн.

Удельное акустическое сопротивление измеряется в Па·с/м (см) или дин·с/см3 (СГС); 1 Па·с/м = 10-1 дин · с/см3.
Значение удельного акустического сопротивления среды часто выражается в г/с·см2, причем 1 г/с·см2 = 1 дин·с/см3. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн.

Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями.

На расстоянии в половину длины волны амплитудное значение давления из положительного становится отрицательным.
Для выражения звукового давления в единицах СИ используется паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м2). Звуковое давление в системе СГС измеряется в дин/см2; 1 дин/см2 = 10-1Па = 10-1Н/м2. Наряду с указанными единицами часто пользуются внесистемными единицами давления – атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98o106 дин/см2 = 0,98o105 Н/м2. Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см2.
Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растет в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак.
Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:

ускорение пропорционально квадрату частоты и амплитуде смещения.
Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разряжения среды создают добавочные изменения давления в среде по отношению к окружающему ее внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашел применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях – ультразвуковых весах.

 

  1. Биологическое действие ультразвука

Основное преимущество ультразвуковых методов исследования — их полная безопасность для больного. Даже при обследовании таких высокочувствительных образований, как мозг (эхоэнцефалография), ткани развивающегося ребенка в акушерской практике, ткани глаза (эхоофтальмография), не сообщается о каком-либо вредном воздействии ультразвука. Импульсный отраженный ультразвук оказывает механическое, тепловое и физико-химическое влияние на биологические ткани.

Механическое воздействие сводится к перемещению частиц ткани с малой амплитудой, но высокой частотой, тепловое — складывается из той энергии, которая образуется как непосредственно под влиянием ультразвука, так и при перемещении частиц ткани, и физико-химическое воздействие заключается в изменении хода окислительно-восстановительных процессов путем активации ряда ферментных систем (Свадковская Н. Ф., 1957).

Заметные сдвиги в биологических объектах, вызываемые ультразвуком, возникают лишь при значительных параметрах интенсивности колебаний, продолжительности воздействия, положения и фокусировки источника колебаний и, наконец, повышенной чувствительности ткани к ультразвуку.

Кратковременность импульса значительно снижает среднюю мощность ультразвука, даже если пиковая мощность достигает существенных величин. Средняя мощность колебаний, используемая в диагностических приборах, колеблется от 15 до 400 мВт/см2.

Подобная мощность в сочетании с крайней кратковременностью импульса практически не создает угрозы каких-либо нарушений биологических процессов. Кроме того, как указывает Н. Feigenbaum (1976), большое количество ультразвуковой энергии поглощается передней грудной стенкой. До сердца доходит лишь около 10% всей излучаемой энергии, что еще больше снижает минимальную возможность биологического действия ультразвука, излучаемого диагностическим прибором.

  1. Ультразвуковые генераторы

Одной из ответственных частей УЗ аппарата является электронный генератор – устройство, предназначенное для преобразования энергии электрической промышленной сети в энергию электрических колебаний ультразвуковой частоты.
Решение проблемы автоматической подстройки параметров генератора при всех возможных изменениях параметров обрабатываемых сред и разработка электрического генератора для специализированного ультразвукового станка является сложной проблемой.
Наиболее интересной и перспективной является схема генератора с независимым возбуждением и автоматической подстройкой частоты.
К достоинству таких схем относятся все достоинства схем генераторов с независимым возбуждением, плюс к этому добавляется возможность автоматической подстройки частоты в соответствии с изменением механической частоты колебательной системы.
Однако у всех разработанных к настоящему времени генераторов с автоподстройкой частоты есть следующие общие недостатки:
1. Ограничение по максимальной развиваемой мощности, обусловленное длительным временем рассасывания зарядов в базах современных высоковольтных транзисторов при протекании больших токов.
2. Диапазон перестройки рабочей частоты генератора меньше возможного диапазона изменения собственной рабочей частоты колебательной системы.
3. Ограниченный диапазон изменения или полное отсутствие регулировок выходной мощности генераторов.
4. Полное отсутствие или недостаточное быстродействие систем автоматического поддержания амплитуды механических колебаний колебательной системы.
5. Отсутствие систем защиты от нерегламентных режимов работы;
6. Отсутствие ультразвуковых колебательных систем, способных обеспечить максимально эффективное согласование выходного электрического сопротивления электрического генератора и механического сопротивления обрабатываемых сред в широком диапазоне.
7. Снижение производительности (эффективности ультразвукового воздействия) при изменении влияния обрабатываемых сред даже при наличии системы автоматической подстройки рабочей частоты.
На основании результатов создания электронных генераторов для ультразвуковых аппаратов и исследований, проведенных выше, был разработан электрический генератор, позволяющий исключить перечисленные недостатки.
Это стало возможным за счет обеспечения автоматической подстройки режимов работы электронной схемы генератора при всех возможных изменениях условий ультразвукового технологического воздействия, при использовании различных колебательных систем с большим числом разнообразных инструментов.

 

Блок-схема ультразвукового технологического аппарата

 

Электронный генератор включает в себя:
1 – фазовый компаратор;
2 – генератор, управляемый напряжением;
3– выходные каскады УЗ генератора;
4 – электрический LC контур;
5 – ультразвуковую колебательную систему;
6 – устройство, фиксирующее амплитуду напряжения на колебательной системе;
7- датчики для снятия сигналов обратной связи;
8 – регулятор;
9 – тиристорный регулятор;
10 – устройство для формирования уставки, задающей стабилизируемую мощность;
11 – блок питания низковольтной части;
12 – устройство защиты и автоматики.

  1. Физические процессы, обусловленные воздействием УЗ на биологические объекты.

 

Особенности распространения УЗ:

  1. Преломление и отражение. Так как волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха, то отражение УЗ на границе воздух-кожа составляет 99,99%.
  2. Деформация, кавитация (возникает при интенсивностях, больших 0,8?104 Вт/м2).
  3. Выделение тепла
  4. Химические реакции.

 

Физические процессы, обусловленные воздействием УЗ:

  • Микровибрация на клеточном и субклеточном уровне,
  • разрушение биомакромолекул,
  • перестройка и повреждение биологических мембран, изменение проницаемости мембран,
  • тепловое действие,
  • разрушение клеток и микроорганизмов.

 

Микровибрации (в организме) – это биофизический ресурс, который организм получает за счет непрерывного и попеременного сокращения мышечных клеток, а также за счет возбуждения голосовых связок в процессе пения или говорения. Мышечные клетки составляют 60% массы тела человека и примерно половину получаемой ими энергии они тратят на сокращение для создания микровибрации. То есть, организм в целом тратит колоссальное количество энергии на создание микровибрации за счет мышечных тканей.

Микровибрация обеспечивает перемещение веществ и клеток по тканям и капиллярам, и непосредственно влияет на все иммунные, регенеративные и обменные процессы. Чтобы организм был здоров, необходимо, чтобы все ткани были здоровы, то есть клетки получали достаточно питания и из тканей своевременно удалялись шлаки (погибшие и поврежденные клетки). Все эти условия напрямую связаны с микровибрацией.

Существует два, принципиально разных, метода компенсации дефицита микровибраций в организме:

– за счет энергии скелетных мышц путем выполнения специальных физических упражнений, дыхательной гимнастики или возбуждения мышц электрическим током (электротерапия);

– за счет внешнего источника микровибрации.

 

Наиболее дефицитными являются микровибрации голосового (звукового, акустического) диапазона частот (20-10 000) Гц. Такие микровибрации хорошо проникают в ткани организма на глубину до 10 сантиметров. Эта особенность используется в медицинских аппаратах, которые получили название виброакустических. Процесс передачи звуковой микровибрации в тело называется виброакустическим воздействием или фонированием и не требует энергетических затрат организма.

 

  1. Ультразвуковая диагностика

Физическая основа УЗИ — пьезоэлектрический эффект. При деформации монокристаллов некоторых химических соединений (кварцтитанат бария) под воздействием ультразвуковых волн, на поверхности этих кристаллов возникают противоположные по знаку электрические заряды — прямой пьезоэлектрический эффект. При подаче на них переменного электрического заряда в кристаллах возникают механические колебания с излучением ультразвуковых волн. Таким образом, один и тот же пьезоэлемент может быть попеременно то приёмником, то источником ультразвуковых волн. Эта часть в ультразвуковых аппаратах называется акустическим преобразователем, трансдюсером или датчиком.( Датчик преобразователя содержит один или несколько кварцевых кристаллов, которые также называются пьезоэлектрическими кристаллами. Под действием электрического тока эти кристаллы быстро изменяют свою форму и начинают вибрировать, что приводит к возникновению и распространению наружу звуковой волны. И наоборот, когда звуковая волна достигает кварцевые кристаллы они способны испускать электрический ток. Таким образом, одни и те же кристаллы используются для приема и передачи звуковых волн. Также датчик имеет звукопоглощающий слой, которые фильтрует звуковые волны, и акустическую линзу, которая позволяет сфокусироваться на необходимой волне)

Ультразвук распространяется в средах в виде чередующихся зон сжатия и расширения вещества. Звуковые волны, в том числе и ультразвуковые, характеризуются периодом колебания — временем, за которое молекула (частица) совершает одно полное колебание; частотой — числом колебаний в единицу времени; длиной — расстоянием между точками одной фазы и скоростью распространения, которая зависит главным образом от упругости и плотности среды. Длина волны обратно пропорциональна её частоте. Чем меньше длина волн, тем выше разрешающая способность ультразвукового аппарата. В системах медицинской ультразвуковой диагностики обычно используют частоты от 2 до 10 МГц. Разрешающая способность современных ультразвуковых аппаратов достигает 1-3 мм.

Любая среда, в том числе и ткани организма, препятствует распространению ультразвука, то есть обладает различным акустическим сопротивлением, величина которого зависит от их плотности и скорости распространения звуковых волн. Чем выше эти параметры, тем больше акустическое сопротивление. Такая общая характеристика любой эластической среды обозначается термином «акустический импеданс».

Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая — отражается. Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.[1]

В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей, а также разницу в плотностях, образующих границу.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 — 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Особый интерес в диагностике вызывает использование эффекта Допплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя.

Составляющие системы ультразвуковой диагностики

Генератор ультразвуковых волн

Генератором ультразвуковых волн является датчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

Ультразвуковой датчик

В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

Виды датчиков

Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

Линейные датчики

Линейные датчики используют частоту 5-15 Мгц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур — щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

Конвексные датчики

Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов — органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

Секторные датчики

Секторный датчик работает на частоте 1,5-5 Мгц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография — исследование сердца.

Гель для ультразвуковой эмиссии

На момент проведения ультразвукового исследования, должен быть обеспечен полный контакт датчиков аппарата с телом пациента на микроуровне. Для этих целей применяются специальные гели. Обычный состав геля: глицерин, натрий тетраборнокислый, сополимер стирола с малеиновым ангидридом, вода очищенная.

Методики ультразвукового исследования

Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная — чёрным (эхонегативные участки). При негативной регистрации наблюдается обратное положение. Выбор позитивной или негативной регистрации не имеет значения. Изображение, получаемое при исследовании, может быть разным в зависимости от режимов работы сканера. Выделяют следующие режимы:

  • A-режим. Методика даёт информацию в виде одномерного изображения, где первая координата, это амплитуда отраженного сигнала от границы сред с разным акустическим сопротивлением, а вторая расстояние до этой границы. Зная скорость распространения ультразвуковой волны в тканях тела человека, можно определить расстояние до этой зоны, разделив пополам (так как ультразвуковой луч проходит этот путь дважды) произведение времени возврата импульса на скорость ультразвука.
  • B-режим. Методика даёт информацию в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени, что позволяет оценивать их морфологическое состояние.
  • M-режим. Методика даёт информацию в виде одномерного изображения, вторая координата заменена временной. По вертикальной оси откладывается расстояние от датчика до лоцируемой структуры, а по горизонтальной — время. Используется режим в основном для исследования сердца. Дает информацию о виде кривых, отражающих амплитуду и скорость движения кардиальных структур.
  1. Механизмы действия УЗ излучения на биологические ткани.

В тканях под действием ультразвука активируются обменные процессы, увеличивается содержание нуклеиновых кислот, и стимулируются процессы тканевого дыхания. Под влиянием ультразвука повышается проницаемость стенок сосудов.
В основе биологического действия ультразвука могут лежать также вторичные физико-химические эффекты. Так, при образовании акустических потоков может происходить перемешивание внутриклеточных структур. Кавитация приводит к разрыву молекулярных связей в биополимерах и других жизненно важных соединениях и к развитию окислительно-восстановительных реакций. Ультразвук повышает проницаемость биологических мембран, вследствие чего происходит ускорение процессов обмена веществ из-за диффузии. Все перечисленные факторы в реальных условиях действуют на биологические объекты в том или ином сочетании совместно, и поэтому трудно, а подчас невозможно раздельно исследовать процессы, имеющие различную физическую природу.
В настоящее время, ультразвук – один из методов интенсификации биокатализа. Ультразвуковое облучение ассоциируется с повреждением клеток, но доказаны и благотворные последствия озвучивания на усиление биокатализа и жизнедеятельность живых клеток.
Оксиление холестерола клетками Rhodococcus erythropolis, дегидрогенирование кортизола неподвижными клетоками Arthrobacter было исследовано при ультразвуковом воздействии на частоте 20 кГц. Значительное повышение скорости биотрансформации наблюдалось при облучении клеток в течение 5 секунд каждые 10 минут мощностью 2,2 Вт/см2. Ультразвук повышал массобмен через клеточные мембраны.
Кавитация в суспензиях клеток. При повышении интенсивности ультразвука до значений, когда в среде возникают механические усилия, сравнимые с прочностью клеточных мембран, начинается процесс разрушения клеток. Эффект наблюдается, если амплитуда пульсации пузырьков возрастает до определенной величины. Величина эта различна для разных клеток, зависит от их формы и размера, а также прочности цитоплазмической мембраны и наличия цитоскелета.
Ультразвуковая дезинтеграция клеток получила широкое применение в биотехнологии, в биохимических и вирусологических исследованиях для выделения отдельных веществ и фрагментов клеток, а также в лабораторной диагностике для определения механической резистентности клеточных мембран.
Воздействие ультразвука на белки. Известно, что в ультразвуковом поле происходит изменение структуры, формы и функции молекулы белка. Направление этих изменений зависит от строения белковых и концевых групп белка и свойств газа, содержащегося в водном растворе.
Установлено, что эффект воздействия ультразвука на биомакромолекулы (нуклеопротеиды, нуклеиновые кислоты, липопротеиды и другие) зависит от природы газа, присутствующего в озвучиваемом растворе исследуемых веществ. В присутствии кислорода происходит процесс деградации биомакромолекул, вызывающий угнетение их биокаталитической активности. Данные процессы сопровождаются снижением вязкости растворов этих веществ. В присутствии водорода наблюдается увеличение молекулярной массы биомакромолекул при сохранении их нативных свойств, в частности таких белков, как сывороточный альбумин, трипсин и пепсин.
Воздействие ультразвука на ферменты. Выявлено, что изменения ферментов при ультразвуковом облучении обусловлены не только структурой этих белков, но и природой присутствующего газа. В связи с этим ультразвук не всегда оказывает на них инактивирующее действие. Инактивация ферментов при озвучивании наблюдается в том случае, если этот процесс происходит в присутствии кислорода; в среде, насыщенной водородом, инактивация не происходит. Это установлено при ультразвуковой обработке таких ферментов, как трипсинпепсинтирозиназа и других. Некоторые ферменты, например каталаза, вообще не инактивируются ультразвуком. Оксидазы более чувствительны к воздействию ультразвука, в то время как редуктазы, каталазы и амилазы обладают достаточной устойчивостью.
Стерилизующий эффект ультразвука обусловлен разрушающим воздействием ультразвуковых колебаний на микроорганизмы, что позволило использовать ультразвук для стерилизации и дезинфекции. Так, например, стерилизация молока при озвучивании в течение 15…60 секунд задерживает его скисание на 5 суток, при этом витамины в молоке сохраняются. В 1 см3 молока, стерилизованного ультразвуком, содержится в среднем 18 КОЕ, в то время как после обычной пастеризации в течение 1 часа в 1 см3 его остается около 3000 КОЕ.
Механизм стерилизующего действия ультразвука весьма сложен и раскрыт не полностью. Очевидно, кавитация является ведущим фактором. Явление кавитации возникает в первую очередь там, где прочность жидкости наименьшая, т.е. на границе раздела сред клетка-жидкость. При образовании на поверхности клетки кавитационного пузырька в момент его уменьшения происходит как бы втягивание структуры стенки в полость каверны. В последующей фазе при захлопывании каверны возникает мощный гидродинамический удар, достигающий десятков МПа.
Выявлены положительные результаты дезинфекции воды посредством ультразвуковых колебаний; в течение 5 минут удается достигнуть полной стерилизации воды без применения каких-либо химических реагентов. Отмечается также положительный эффект применения ультразвуковых колебаний для стерилизации консервов и соков.
Выяснено, что при действии ультразвука повышается чувствительность микроорганизмов к дезинфицирующим веществам. Стерилизующий эффект при обработке водных взвесей бактерий кишечной палочки (Escherichia coli), которые предварительно подвергались действию ультразвука, был достигнут при значительно меньших концентрациях хлора, формалина и других дезинфицирующих веществ. Это обусловлено изменением («расшатыванием») макромолекулярных структур, входящих в состав оболочки озвучиваемых микроорганизмов, что приводит к нарушению проницаемости оболочек и мембран живых клеток.
Почти все микроскопические растения и организмы погибают, если подвергнуть их действию ультразвука высокой интенсивности. Этот факт в настоящее время рассматривается как альтернативный, безопасный путь к очищению воды и продуктов питания.
Разрушаются ультразвуком кишечная (Escherichia coli), брюшнотифозная (Salmonella typhi), дифтерийная (Corynebacterium diphtheriae), сенная (Bacillus subtilis) палочки, столбняка (Tetanus bacillus), сальмонеллы (Salmonella), кокки (Staphylococcus), трипаносомы (Trypanosoma bacillus), трихомонады (Trichomonas), возбудитель тифа (Typhus recurrens) и др. Ультразвук высокой интенсивности оказывает разрушающее действие на вирусы табачной мозаики (Tobaco mosaic virus), энцефалита (Encephalitis virus), сыпнотифозные, гриппа (Influentia). Бактериофаги больших размеров также чувствительны к действию ультразвука. Из патогенных микроорганизмов наибольшую устойчивость к воздействию ультразвука проявляют различные штаммы туберкулезных палочек (Tuberculum bacillus).
Cтерилизующее действие ультразвука на микроорганизмы проявляется на частотах 20 кГц и выше, при интенсивности более 0,5 Вт/см2 в кавитационном режиме облучения.
Применение ультразвука возможно для стерилизации лекарственных препаратов, приготовленных как в заводских, так и в аптечных условиях. В аптечных условиях, применяя ультразвук частотой до 490 кГц и интенсивностью до 20 Вт/см2 в течение 5 минут, достигали полной стерилизации глазных капель: 0,25%-ного раствора сульфата цинка, 1%-ных растворов дионина, платифиллина гидротартрата, солянокислого пилокарпина. Анализ приготовленных растворов показал сохранение подлинности и количественного содержания лекарственных веществ в растворах до и после ультразвукового воздействия.
Известно, что высокую степень микробной обсемененности имеет лекарственное сырье, в особенности растительное. Поэтому настои, отвары и слизи в аптеках сохраняются не более 2 суток, так как после этого срока может бурно развиться микрофлора. Ультразвук определенных частот и интенсивности вызывает эмульгирование двух несмешивающихся жидкостей и одновременно стерилизацию обращенных эмульсий. Если же возникает необходимость простерилизовать готовые эмульсии ультразвуком, то экспозицию озвучивания по сравнению с озвучиванием суспензии следует уменьшить до 5…10 мин при интенсивности до 5…10 Вт/см2 независимо от частоты ультразвука. Одновременное использование антисептиков и ультразвуковой обработки позволяет снизить концентрацию антисептиков в 10…50 раз в лекарственных формах.
В настоящее время делаются попытки стерилизации большой группы жидких лекарственных форм с помощью ультразвука различных частот и интенсивности в сочетании с некоторыми антимикробными препаратами. Ионы серебра, меди, цинка, находящиеся в растворе в концентрациях, не поддающихся количественному определению («следы»), в комбинации с ультразвуком (интенсивностью 0,3…0,5 Вт/см2 временем облучения 15…30 мин) проявляют олигодинамическое воздействие на всю микрофлору, которая находится в лекарственной форме. Активность ионов металлов в отношении, например, грибов снижается в ряду Ag+, Hg2+, Cu2+, Cd2+, Cr2+, Ni2+, Pb2+, Co2+, Zn2+, Fe2+, Ca2+. Соли тяжелых металлов в большой концентрации коагулируют белки, в малых – являются блокаторами меркаптогрупп.
При ультразвуковой обработке водных суспензий микобактерий частотой 20 кГц, происходит разрушение 93% микобактерий, а при высокочастотном ультразвуковом воздействии (612 кГц) – 35,5%.
Ультразвуковой капиллярный эффект – явление увеличения глубины и скорости проникновения жидкости в капиллярные каналы под действием ультразвука (по сравнению с глубиной и скоростью, обусловленных только капиллярными силами). Открытие ультразвукового капиллярного эффекта принадлежит белорусскому ученому академику Е.Г. Коновалову (1961) [46,47]. В его эксперименте использовались стеклянные трубки с диаметром 2 мм, имевшие входной рупор. При нормальном падении волн на отверстие рупора в трубке наблюдался дополнительный подъем уровня жидкости (сверх высоты капиллярного уровня), пропорциональный силе звука. В серии работ Е.Г. Коновалова обнаружено, что дополнительный подъем под действием ультразвука линейно растет при повышении температуры и увеличении диаметра. Максимальная высота и скорость подъема наблюдались при контакте капилляров с поверхностью излучателя. Исследования позволили полагать, что ультразвуковой капиллярный эффект обусловлен ударами кумулятивных струй или в упрощенном варианте давлением, возникающим при захлопывании кавитационных пузырьков около устья капилляра. Подобно ультразвуковому капиллярному эффекту известно явление «обратного» ультразвукового капиллярного эффекта, нашедшего широкое применение, в том числе и в медицине (Педдер В.В, 2009) [49].
Влияние ультразвука на развитие черенков. В Ботаническом саду Одесского университета изучали влияние ультразвуковых колебаний на возможность ускорения корнеобразования и увеличения выхода укорененных черенков роз (Rosa L.) [48]. Черенки нарезали из средней части однолетних полуодревесневших побегов. Связанные в пучки черенки помещали в ванну, дном которой служила излучающая пластинка, после чего ванну заполняли водой. Опытные черенки озвучивали в течение 15, 30, 45 секунд, 1, 3, 5, 12 и 20 минут при интенсивности 1 Вт/см2 и частоте колебаний 22 кГц, контрольные – выдерживали в водной среде. Для укоренения использовали смесь листовой земли, чернозема и речного песка в соотношении 2:2:1. Результаты опыта показали, что у всех сортов обработка в течение трех минут увеличивает укореняемость и ускоряет корнеобразование. Срок укоренения черенков в опыте составил 15 дней, в контроле 28 дней. Под действием ультразвука интенсивность трансприрации у опытных растений по сравнению с контролем увеличивалась на 20…25%. Применение ультразвука позволяет проводить черенкование без специальных туманообразующих установок 2…3 раза в год.

 

  1. Применение ультразвука в медицине

Применение ультразвука существенно обогатило арсенал физиотерапевтических методов. Использование ультразвука позволило не только успешно бороться с некоторыми болезнями, но и повышать жизнеспособность и сопротивляемость здорового организма неблагоприятным внешним условиям [27].
Применение ультразвука, как, впрочем, и других лечебных воздействий, требует дозировки. При слишком низких интенсивностях и коротком времени воздействия ультразвук может оказаться неэффективным, а интенсивное и длительное воздействие может обусловить весьма существенные и не обязательно желательные изменения в организме.
При некоторых вяло протекающих инфекционных и других заболеваниях весьма полезной оказывается проводимая, с лечебной целью аутогемотерапия – внутримышечное или внутривенное введение больному (человеку или животному) его собственной крови. Такая процедура приводит, как правило, к улучшению обменных процессов и повышению защитных сил организма.
Эффективность аутогемотерапии можно повысить, если перед вливанием кровь облучить ультрафиолетом, осторожно взболтать или подвергнуть действию ультразвука низких интенсивностей. При этом отмечается значительное улучшение общего состояния организма, повышение его жизнеспособности и сопротивляемости неблагоприятным изменениям внешней среды.
Рефлексотерапия – лечебное воздействие иглами, теплотой, надавливанием на определенные биологически активные точки, расположенные на поверхности тела, – имеет многовековую историю. В последнее время к традиционным методам воздействия добавились и современные – воздействие электрическим током, лазерным лучом, ультразвуком.
Совокупность биологически активных точек функционально представляет собой как бы вынесенный на поверхность тела пульт индикаторов и датчиков, сигналы с которых корректируют работу внутренних органов. Функции таких индикаторов, очевидно, выполняют многочисленные рецепторы и нервные окончания, расположенные на участках рыхлой соединительной ткани в области локализации биологически активных точек.
Как известно, реакция рецепторов па внешнее воздействие всегда сопровождается деполяризацией, снижением мембранного потенциала и изменением проницаемости их мембран, по крайней мере, по отношению к ионам натрия и калия. Известно также, что изменение проницаемости клеточных мембран – универсальная реакция клеток па ультразвуковое воздействие. Таким образом, очевидно, что действие ультразвука на биологически активные точки обусловлено деполяризацией мембран рецепторов содержащихся в этих точках.
Например, увеличивается половая потенция баранов и хряков после воздействия непрерывным ультразвуком с интенсивностью 0,05…0,2 Вт/см2 в течение 1…3 мин на точку «38 БАЙ ХУЭ», расположенную на средней линии спины, на уровне верхнего края крестцовой кости, и на три пары точек «38 МУ-Я», расположенных в 50 мм от средней линии, на уровне второго, третьего и четвертого крестцовых позвонков.
Воздействие ультразвуком на общеукрепляющие точки обусловливает изменение не только в воспроизводительной функции животных. Сразу же после воздействия па эти точки у человека и животных па 7…10 % увеличивается частота пульса и на 10-12 % – частота дыхания, но через несколько часов оба показателя возвращаются к норме.
Ультразвуковая физиотерапия весьма эффективна при лечении острых синовитов, тендовагинитов, периоститов, фиброзных и осцифицирущих периоститов.
Воздействие одним лишь ультразвуком на очаг заболевания (местное воздействие) при острых и хронических асептических процессах, касающихся суставов, сухожилий, связок и других звеньев конечностей, способствует быстрому восстановлению их опорно-двигательной функции. Обычно выздоровление наступает после 6-7 процедур, по одной ежедневно или через день. При хронических пролиферативных процессах курс лечения увеличивается до 11-12 процедур. Если клинические проявления заболевания не проходят, то курс лечения необходимо повторить через 1-2 месяца.
Благодаря ярко выраженному обезболивающему действию, ультразвук особенно эффективен при лечении неосложненных вывихов голеностопного и плечевого суставов. При острых синовитах, тендовагинитах и других заболеваниях весьма эффективен фонофорез гидрокортизона или дексазона, обеспечивающий одновременное действие ультразвука и лекарственного препарата.
Фонофорез – введению лекарственного препарата сквозь неповрежденную кожу благодаря силам, действующим в акустическом поле, способствует также обусловленное ультразвуком повышение проницаемости клеточных мембран, причем толщина слоя ткани, состоящей из клеток, мембраны которых обладают повышенной проницаемостью, пропорциональна интенсивности ультразвука. Повышенная проницаемость сохраняется в течение полутора-двух часов, однако наибольшая проницаемость наблюдается в течение первых 25 мин после воздействия ультразвуком. Поэтому в ряде случаев после ультразвукового воздействия весьма эффективен электрофорез. При такой последовательности электрофоретически введенные лекарственные вещества локализуются не только в межклеточном пространстве, но и попадают во внутренний объем клетки.
В физиотерапии опорно-двигательного аппарата лучше всего действует, не вызывая отрицательных последствий и быстро приводя к выздоровлению, ультразвук с интенсивностями в интервале 0,1…0,4 Вт/см2. Под влиянием низких интенсивностей ультразвука, стимулирующих обменные процессы, снижается экссудация, разрыхляется фиброзная ткань, начинается декальцификация сформировавшихся и формирующихся остеофитов и экзостозов. Увеличение интенсивности и длительности воздействия приводит к разрежению кортикального слоя кости в зоне воздействия ультразвука и другим нежелательным последствиям.
Способность ультразвука ускорять процессы синтеза соединительнотканных и других белков, а также РНК в клетках, его стимулирующее, противовоспалительное и болеутоляющее действие делают ультразвуковую терапию ран весьма эффективной.
Под действием ультразвука (0,88 МГц; 0,5 Вт/см2; 3…5 мин.) раны размером 3…5 см в поперечнике заживают на 18-20-й день после их появления. Таким образом, раны заживают на 8-10 дней быстрее, чем раны, кожу вокруг которых ежедневно обеззараживают 70%-ным раствором винного спирта, а поверхность раны смазывают 50%-ным водным раствором глицерина, и на 4-5 дней быстрее, чем раны, края и поверхность которых ежедневно покрывают синтомициновой эмульсией.
Следует отметить, что результат комбинированного действия ультразвука с синтомициновой эмульсией не превышает результатов, обеспечиваемых применением одного лишь ультразвука. Очевидно, ультразвуковое воздействие настолько полно реализует резервы организма, что влияние других факторов на этом фоне оказывается незначительным.
Заживление послеоперационных ран можно ускорить, используя ультразвук для предварительной подготовки тканей. Дооперационное воздействие ультразвуком, стимулируя защитные процессы, ускоряет после-операционную регенерацию тканей, заживление операционного разреза, существенно упрочняет формирующийся рубец. Так, на четвертые сутки после операции, проведенной па коже, предварительно обработанной ультразвуком, прочность рубца оказывается более чем на 30 % выше, чем прочность рубца на неподготовленном участке.
Весьма целесообразно использовать ультразвук и для лечения воспалительных инфильтратов, нередко возникающих в качестве послеоперационных осложнений. После воздействия ультразвуком с интенсивностью 0,2…0,6 Вт/см2 воспалительные явления обычно стихают после 4-5 процедур, а после 6-9 процедур инфильтраты чаще всего рассасываются. При ежедневном лечении ультразвуком площадь раны уменьшается в 1,5-2 раза быстрее, патогенные микробы исчезают из раны на 2-3 дня раньше обычного, а рубец формируется без келоидизации. В целом ультразвуковое облучение ускоряет заживление осложненных операционных ран на 2-3 дня.
Фурункулез – острое гнойнонекротическое воспаление волосяных мешочков, связанных с ними сальных желез и окружающей их клетчатки, вызывается стафилококком и возникает в местах патогенного заражения, а также механического или химического раздражения кожи. У животных фурункулы нередко образуются на вымени, ежедневные десятиминутные воздействия ультразвуком (0,88 МГц; 0,2…1 Вт/см2) непосредственно на поверхность фурункулов через водно-глицериновую контактную среду значительно ускоряют лечение. Уже после первой процедуры уменьшается болезненность пораженного участка, после второй или третьей снижается воспаление, боли полностью исчезают, фурункулы уменьшаются в размерах. На пятый-шестой день большинство фурункулов вскрывается, из них выделяются гнойный экссудат и гнойные пробки. Образовавшиеся па месте фурункулов язвочки в последующие 5-6 дней полностью заживают. В некоторых случаях фурункулы не вскрываются: после 10-12 процедур инфильтраты рассасываются и на их месте под кожей обнаруживаются лишь безболезненные уплотнения.
Следует отметить, что использование в качестве контактной среды вместо водно-глицериновой смеси тетрациклиновой мази лишь незначительно ускоряет процесс лечения. Очевидно, в обоих случаях эффект обусловлен терапевтическим действием ультразвука, а не действием веществ, содержащихся в среде, обеспечивающей акустический контакт между фурункулом и излучателем ультразвуковых волн.
При абсцессах ультразвуковая терапия также дает хорошие результаты. Используются те же методы воздействия и параметры ультразвука, что и при лечении фурункулеза. Применение ультразвука особенно эффективно при лечении абсцессов, расположенных неглубоко под поверхностью тела.

Заключение:

При воздействии ультразвука на организм человека отмечается, прежде всего, термическое действие вследствие превращения энергии ультразвука в тепло. Ультразвук вызывает микромассаж тканей (сжатие и растяжение), что способствует кровообращению и, следовательно, улучшению функции ткани. Ультразвук стимулирует обменные процессы и оказывает также нервнорефлекторное действие.

Под влиянием ультразвука изменения отмечаются не только в органах, подвергшихся воздействию, но и в других частях организма. При длительном и интенсивном воздействии ультразвук может вызвать разрушение клеток тканей.

Разрушающее действие ультразвука связано, по-видимому, с явлением кавитации – образованием полостей в жидкости, что приводит к гибели тканей и смерти экспериментальных животных.

Микроскопические кавитационные пузырьки были обнаружены в межклеточных пространствах животных тканей под влиянием ультразвуковых волн большой интенсивности.

Многие микроорганизмы могут быть разрушены ультразвуком. Так, он инактивирует вирус полиомиелита, энцефалита и др. Стрептококки после воздействия ультразвуком хуже фагоцитируются. Воздействие ультразвуковых волн на белки приводит к серьезным структурным нарушениям белковых частиц и их распаду. При облучении ультразвуком молока разрушается содержащийся в нем витамин С.

При так называемом озвучении крови ультразвуком происходит разрушение эритроцитов и лейкоцитов, повышается вязкость и свертывание крови, ускоряется РОЭ. Ультразвук угнетает дыхание клетки, уменьшает потребление кислорода, инактивирует некоторые энзимы и гормоны.

 

При воздействии ультразвука высокой интенсивности на животных отмечаются сильные боли, облысение, ожоги, помутнение роговицы и хрусталика, гемолиз, серьезные сдвиги биохимического характера (понижение содержания в крови холестерина, мочевой и молочной кислоты), при высоких частотах наступает смерть (мелкие кровоизлияния в различных органах).

 

Как показывают экспериментальные данные и клинические наблюдения, ультразвук может обусловить серьезные изменения со стороны органа слуха. Ультразвук вызывает разрушение клеток кортиева органа и нервных клеток, кровоизлияния в scala tympani, разрушение и патологическое развитие костной ткани. Предполагают, что выявленные у большого процента населения США изменения слуха связаны со значительным распространением звуковых установок.

У лиц, длительно подвергавшихся воздействию ультразвуковых колебаний, отмечается сонливость, головокружения, быстрая утомляемость. При обследовании обнаруживаются явления вегетативной дистонии.

Қажетті материалды таппадың ба? Онда KazMedic авторларына тапсырыс бер

Физические основы воздействия звука  Применение ультразвуковых исследований  в медицине

error: Материал көшіруге болмайды!