Хрящ. Регенерация

Скелетные ткани (textus skeletales) — это разновидность соединительных тканейс выраженной опорной, механической функцией, обусловленной наличиемплотного межклеточного вещества. К скелетным тканям относят:

  • хрящевые ткани,
  • костные ткани,

Помимо главной опорной функции, эти ткани принимают участие в водно-солевом обмене, – в основном, солей кальция и фосфатов. В данном реферате представлена информация в частности о хрящевой ткани, ее видах, регенерации  и возрастных изменениях.

Хрящевые ткани: основные понятия

Хрящевые ткани (textus cartilaginei) отличаются упругостью и прочностью, что связано с положением этой ткани в организме. Хрящевая ткань входят в состав органов дыхательной системы, суставов, межпозвоночных дисков.

Хрящ отличается плотным упругим межклеточным веществом, образующим вокруг клеток-хондроцитов и групп их особые оболочки, капсулы. Важнейшим отличие хрящевой ткани от костной и большинства других типов тканей является отсутствие внутри хряща нервов и кровеносных сосудов.

Снаружи хрящ одет особой соединительно-тканной оболочкой — перихондрием, или надхрящницей. Хрящ играет роль твёрдой основы, скелета тела животного или образует упругие части костного скелета (одевает концы костей, образуя суставные поверхности, или соединяет кости в виде прослоек).

Как и в других тканях, в хрящевой ткани выделяют клетки и межклеточное вещество. Главные клеточные элементы – хондробласты и хондроциты. Межклеточного вещества в хрящевой ткани больше, чем клеток. Оно отличается гидрофильностью и упругостью. Именно с упругостью межклеточного вещества связана опорная функция хрящевых тканей.

Хрящевая ткань значительно гидратирована, – в свежей ткани содержится до 80% воды. Более половины объема “сухого” вещества хрящевой ткани составляет фибриллярный белок коллаген. В хрящевой ткани остутствуют сосуды – питательные вещества диффундируют из окружающих тканей.

Виды хрящевой ткани

Исходя из особенностей строения межклеточного вещества, хрящевые ткани делят на три вида – гиалиновую, эластическую и волокнистую, или фиброзную (см. приложение №1).

Гиалиновая хрящевая ткань

Гиалиновая хрящевая ткань (textus cartilaginous hyalinus), называемая еще стекловидной (от греч. hyalos — стекло) — в связи с ее прозрачностью и голубовато-белым цветом, является наиболее распространенной разновидностью хрящевой ткани. Во взрослом организме гиалиновая ткань встречается на суставных поверхностях костей, в местах соединения ребер с грудиной, в гортани и воздухоносных путях.

Большая часть встречающейся в организме у человека гиалиновой хрящевой ткани покрыта надхрящницей (perichondrium) и представляет собой вместе с пластинкой хрящевой ткани анатомические образования — хрящи.

В надхрящнице выделяют два слоя: наружный, состоящий из волокнистой соединительной ткани с кровеносными сосудами; и внутренний, преимущественно клеточный, содержащий хондробласты и их предшественники — прехондробласты. Под надхрящницей в поверхностном слое хряща располагаются молодые хондроциты веретенообразной уплощенной формы. В более глубоких слоях хрящевые клетки приобретают овальную или округлую форму. В связи с тем что синтетические и секреторные процессы у этих клеток ослабляются, они после деления далеко не расходятся, а лежат компактно, образуя изогенные группы от 2 до 4 (реже до 6) хондроцитов.

Более дифференцированные хрящевые клетки и изогенные группы, кроме оксифильного перицеллюлярного слоя, имеют базофильную зону межклеточного вещества. Эти свойства объясняются неравномерным распределением химических компонентов межклеточного вещества — белков и гликозаминогликанов.

Распределение белков и гликозаминогликанов межклеточного вещества неравномерное. Из-за этого в нем выделяют территориальный матрикс – непосредственно окружающий лакуны, а также межтерриториальный матрикс – весь остальной объем межклеточного вещества.)

В гиалиновом хряще любой локализации принято различать территориальные участки межклеточного вещества, или матрикса. К территориальному участку относится матрикс, непосредственно окружающий хрящевые клетки или их группы. Здесь коллагеновые волокна II типа и фибриллы, извиваясь, окружают изогенные группы хрящевых клеток, предохраняя их от механического давления. В межтерриториальном матриксе коллагеновые волокна ориентированы в направлении вектора действия сил основных нагрузок. Пространство между коллагеновыми структурами заполнено протеогликанами.

В структурной организации межклеточного вещества хряща большую роль играет хондронектин. Этот гликопротеин соединяет клетки между собой и с различными субстратами (коллагеном, гликозаминогликанами).

Опорная биомеханическая функция хрящевых тканей при сжатии-растяжении обеспечивается не только строением ее волокнистого каркаса, но и наличием гидрофильных протеогликанов с высоким уровнем гидратации (65—85%). Высокая гидрофильность межклеточного вещества способствует диффузии питательных веществ, солей. Газы и многие метаболиты также свободно диффундируют через него. Однако крупные белковые молекулы, обладающие антигенными свойствами, не проходят. Этим объясняется успешная трансплантация участков хряща в клинике. Метаболизм хондроцитов преимущественно анаэробный, гликолитический.

Структурной особенностью гиалинового хряща суставной поверхности является отсутствие надхрящницы на поверхности, обращенной в полость сустава. Суставной хрящ состоит из трех нечетко очерченных зон: поверхностной, промежуточной и базальной.

В поверхностной зоне суставного хряща располагаются мелкие уплощенные малоспециализированные хондроциты, напоминающие по строению фиброциты.

В промежуточной зоне клетки более крупные, округлой формы, метаболически активные.

Глубокая (базальная) зона делится базофильной линией на некальцинирующийся и кальцинирующийся слои. В последний из подлежащей субхондральной кости проникают кровеносные сосуды и могут происходить процессы обызвествления хряща.

Особенностью межклеточного вещества глубокой зоны суставного хряща является содержание в нем матриксных везикул — мембранных структур диаметром от 30 нм до 1 мкм, которые являются локусами инициальной минерализации скелетных тканей (помимо хряща, они обнаруживаются в костной ткани и предентине). Мембранные структуры образуются путем выбухания участка плазмолеммы хондроцита (соответственно остеобласта в костной ткани и одонтобласта в предентине) с последующим отпочковыванием от поверхности клетки и локализованным распределением в зонах минерализации. Они также могут являться продуктом полной дезинтеграции клеток.

Питание суставного хряща лишь частично осуществляется из сосудов глубокой зоны, а в основном происходит за счет диффузии из синовиальной жидкости полости сустава.

Эластическая хрящевая ткань

Второй вид хрящевой ткани – эластическая хрящевая ткань (textus cartilagineus elasticus) встречается в тех органах, где хрящевая основа подвергается изгибам (в ушной раковине, рожковидных и клиновидных хрящах гортани и др.). В свежем, нефиксированном состоянии эластическая хрящевая ткань бывает желтоватого цвета и не такая прозрачная, как гиалиновая. По общему плану строения эластический хрящ сходен с гиалиновым. Снаружи он покрыт надхрящницей. Хрящевые клетки (молодые и специализированные хондроциты) располагаются в лакунах поодиночке или образуют изогенные группы.

Одним из главных отличительных признаков эластического хряща является наличие эластических волокон в его межклеточном веществе, наряду с коллагеновыми волокнами. Эластические волокна пронизывают межклеточное вещество во всех направлениях.

В слоях, прилежащих к надхрящнице, эластические волокна без перерыва переходят в эластические волокна надхрящницы. Липидов, гликогена и хондроитинсульфатов в эластическом хряще меньше, чем в гиалиновом.

Волокнистая хрящевая ткань

Третий вид хрящевой ткани – волокнистая, или фиброзная, хрящевая ткань (textus cartilaginous fibrosa) находится в межпозвоночных дисках, полуподвижных сочленениях, в местах перехода плотной волокнистой соединительной ткани сухожилий и связок в гиалиновый хрящ, где ограниченные движения сопровождаются сильными натяжениями. Межклеточное вещество содержит параллельно направленные коллагеновые пучки, постепенно разрыхляющиеся и переходящие в гиалиновый хрящ. В хряще имеются полости, в которые заключены хрящевые клетки. Хондроциты располагаются поодиночке или образуют небольшие изогенные группы. Цитоплазма клеток часто бывает вакуолизированной. По направлению от гиалинового хряща к сухожилию волокнистый хрящ становится все более похожим на сухожилие. На границе хряща и сухожилия между коллагеновыми пучками лежат столбиками сдавленные хрящевые клетки, которые без какой-либо границы переходят в сухожильные клетки, расположенные в плотной оформленной волокнистой соединительной ткани сухожилия.

Возрастные изменения и регенерация

По мере старения организма в хрящевой ткани уменьшаются концентрация протеогликанов и связанная с ними гидрофильность ткани. Ослабляются процессы размножения хондробластов и молодых хондроцитов.

В резорбции дистрофически измененных клеток и межклеточного вещества участвуют хондрокласты. Часть лакун после гибели хондроцитов заполняется аморфным веществом и коллагеновыми фибриллами. Местами в межклеточном веществе обнаруживаются отложения солей кальция (“омеление хряща”), вследствие чего хрящ становится мутным, непрозрачным, приобретает твердость и ломкость. В результате появляющееся нарушение трофики центральных участков хряща может привести к врастанию в них кровеносных сосудов с последующим костеобразованием.

Физиологическая регенерация хрящевой ткани осуществляется за счет малоспециализированных клеток надхрящницы и хряща путем размножения и дифференцировки прехондробластов и хондробластов. Однако этот процесс идет очень медленно. Посттравматическая регенерация хрящевой ткани внесуставной локализации осуществляется за счет надхрящницы. Восстановление может происходить за счет клеток окружающей соединительной ткани, не потерявших способности к метаплазии (т.е. превращения фибробластов в хондробласты).

В суставном хряще в зависимости от глубины травмы регенерация происходит как за счет размножения клеток в изогенных группах (при неглубоком повреждении), так и за счет второго источника регенерации — камбиальных клеток субхондральной костной ткани (при глубоком повреждении хряща).

В любом случае непосредственно в области травмы хрящевой ткани отмечаются дистрофические процессы, а далее располагаются пролиферирующие хондроциты.

В течение первых 1—2 мес с момента травмы сначала образуется грануляционная ткань, состоящая из молодых фибробластов, постепенно замещающихся хрящеподобной (хондроидной) тканью, активно синтезирующей протеогликаны и коллаген II типа. Через 3—6 мес регенерат обретает сходство с гиалиново-фиброзным молодым хрящом.

Методы регенерации хрящевой ткани

Наиболее часто спортсмены покидают спорт из-за травм суставно-связочного аппарата. Его слабое место – хрящ. Проблемы с позвоночником также обусловлены в основном патологией межпозвоночных хрящей. Структура хряща позволяет ему испытывать обратимую деформацию и в то же время сохранять способность к обмену веществ и размножению (см. приложение №2).

Коллагеновый каркас является как бы “скелетом” хряща. Он обладает большой упругостью по отношению к силам растяжения и в тоже время оказывает относительно слабое сопротивление нагрузке на сжатие. Поэтому внутрисуставные хрящи (например: мениски и суставные поверхности бедренной и берцовых костей) легко повреждаются при компрессионных (сжимающих) нагрузках и почти никогда при нагрузках на растяжение (“на разрыв”).
Протеогликановый компонент матрикса отвечает за способность хряща связывать воду. Она может удаляться за пределы хряща в синовиальную жидкость и возвращаться в него обратно. Именно вода как несжимаемая субстанция обеспечивает достаточную жесткость хряща. Ее перемещения равномерно распределяет внешнюю нагрузку по всему хрящу, в результате чего происходит ослабление внешних нагрузок и обратимость возникающих при нагрузках деформаций.
Коллагеновые хрящи суставов вообще не содержат сосудов. Большая механическая нагрузка на хрящ несовместима с васкуляризацией (сосудистым обеспечением). Обмен в таком хряще осуществляется благодаря перемещению водымежду компонентами матрикса. Она содержит все необходимые хрящам метаболиты. Поэтому в них резко замедлены как анаболические, так и катаболические процессы. Отсюда плохое их посттравматическое восстановление, в отличие от хрящей с васкуляризацией.

Насколько низка метаболическая активность хряща, можно понять из следующего сравнения. Белковый состав печени полностью обновляется за 4(!) дня. Коллаген хрящей обновляется всего лишь на 50% за 10(!) лет. Поэтому становится понятным, что любая травма хрящевой ткани практически неизлечима, если только не принять специальных мер, направленных на увеличение числа хондроцитов, которые сформируют новый матрикс. В гиалиновых хрящах суставов уже начиная с 30-летнего возраста обнаруживается фибриляция – разволокнение хрящевой поверхности. При микроскопическом исследовании на поверхности хряща обнаруживаются разломы и расщепления. Расщепление хряща происходит как вертикальном, так и в горизонтальном направлении. При этом местами встречаются скопление клеток хрящевой ткани как ответная реакция организма на разрушение хряща. Иногда отмечается возрастное увеличение (!) толщины суставных хрящей как ответное действие на действия механических (тренировка) факторов. Возрастную эволюцию хрящей коленного сустава многие исследователи отмечают начиная уже с 40-летнего возраста. Наиболее существенное изменение, отмечаемое при старении хряща – это уменьшение содержания воды, что автоматически приводит к снижению его прочности.
Отсюда чрезвычайная сложность его посттравматического лечения. Более того, иногда непросто бывает даже сохранение нормального состояния хрящей в ходе обычного тренировочного процесса. Рост мышечной ткани опережает упрочнение суставно-связочного аппарата и в особенности его хрящевой части. Поэтому, рано или поздно, нагрузки достигают такой величины, которую хрящевая часть опорно-двигательного аппарата уже не может выдержать. В результате возникают “неизбежные” труднозалечиваемые травмы, из-за которых спортсмен иногда расстается со спортом. Самостоятельное восстановление хряща никогда не бывает полным. В лучшем случае хрящ восстанавливается на 50% от исходной величины. Однако это не значит, что дальнейшее его восстановление невозможно. Оно возможно при грамотном фармакологическом воздействии, призванном вызвать, с одной стороны, размножение хондроцитов, а с другой – изменение состояния матрикса хряща. Проблема восстановления хряща многократно усложняется еще и тем, что на месте погибшей хрящевой ткани развивается рубцовая ткань. Она не дает хрящу регенерировать в нужном месте. Компенсаторное разрастание участков хряща по соседству с местом повреждения приводит к его деформации, затрудняя задачу фармакологической стимуляции роста. Впрочем, все эти сложности преодолимы, если деформированный хрящ вначале подвергнуть хирургической коррекции.
Потенциальные возможности регенерации хряща достаточно велики (см. приложение №3). Он может регенерировать за счет собственного потенциала (размножение хондроцитов и рост матрикса) и, что не менее важно, за счет других видов соединительной ткани, которые имеют общее с ним происхождение. Примыкающие к хрящу ткани обладают способностью к переориентации своих клеток и превращению их в хрящеподобную ткань, которая неплохо справляется со своими функциями. Возьмем для примера самый частый вид повреждений – повреждение внутрисуставного хряща. Источником регенерации являются:
1) сам хрящ;
2) синовиальная оболочка сустава, нарастающая с краев дефекта и превращающаяся в хрящеподобную ткань;
3) костные клетки, которые, не будем забывать, имеют хрящевое происхождение и при необходимости могут трансформироваться “обратно” в ткань, напоминающую по своему строению хрящевую;
4) клетки костного мозга, которые могут служить источником регенерации при глубоких повреждениях хрящей в сочетании с костным повреждением.
Сразу же после травмы наблюдается “взрыв” митоической активности хондроцитов, которые размножаются и формируют новый матрикс. Процесс этот наблюдается в течение 2-х недель после повреждения, однако ремодулирование поверхности хряща длится не менее 6-и месяцев, а полностью прекращается лишь через год. Качество “нового” хряща, конечно же, уступает качеству “старого”. Если, например, поврежден гиалиновый внутрисуставный хрящ, то через 3-6 месяцев вырастает регенерат, имеющий характер гиалиново-фиброзного молодого хряща, а через 8-12 месяцев, он уже превращается в типичный фиброзный хрящ с матриксом, состоящим из плотно прилегающих друг к другу коллагеновых волокон.
Все исследователи хрящевой ткани единодушны в одном: хрящ не способен восстановить утраченное только за счет собственных внутренних ресурсов и механизмов. Их хватает максимум на 50% регенерата. Еще некоторый прирост регенерата осуществляется за счет других видов соединительной ткани, о которых мы уже говорили, но о полном 100% восстановлении хряща говорить все равно не приходится. Все это вносит изрядную долю пессимизма в оценку возможности выздоровления после сколько-нибудь серьезной травмы хряща, однако поводы для оптимизма все-таки есть. Достижения фармакологии и трансплантологии на сегодняшний день таковы, что можно говорить о полной компенсации даже очень серьезных хрящевых дефектов, как бы ни было это трудоемко.

В подостром периоде, когда отек мягких тканей и болевой синдром существенно снижены, необходимо позаботиться, чтобы как можно полнее рассосалась поврежденная ткань. С этой целью применяет протеолитические ферменты (трипсин, хелеотрипсин, папаин и др.), которые вводятся в поврежденный участок при помощи электрофореза. Хороший эффект дают глюкокортикоидные гормоны – гидрокортизон, преднизолон и др. Как и протеолитические ферменты они вводятся местно, в пораженную область – будь то межпозвоновый диск или суставы конечностей. Гидрокортизон вводят с помощью ультразвука, а преднизолон – электрофорезом. Иногда вводят глюкокортикоидные гормоны в полости суставов, например, при лечении травм коленного сустава. У него самое сложное строение и лечить его травмы весьма непросто. Мениски – внутрисуставные хрящи в коленных суставах при повреждениях практически не срастаются. Поэтому, если имеются надрывы или отрывы частей менисков их необходимо как можно раньше удалить. Легче “вырастить” регенерат на месте удаленного мениска (а такой регенерат обязательно вырастает), чем добиться заживления мениска поврежденного. К счастью, в последние годы широкое развитие получила артроскопия, и операции на коленном суставе становятся все более и более щадящими. Артроскоп позволяет с помощью волокнистой оптики заглянуть внутрь сустава, не вскрывая его (проделываются лишь несколько отверстий). Через артроскоп же проводится и оперативное вмешательство. Иногда бывает так, что в результате травмы мениск остается целым, но отрывается от места своего прикрепления. Если раньше такой мениск всегда удаляли, то теперь все больше появляется специалистов, которые пришивают оторванный мениск на место. После освежения краев раны пришитый мениск прирастает на место.
Если при артроскопии обнаруживается разволокнение тех или иных хрящевых поверхностей, то их шлифуют, “скусывают” специальными кусачками волокна и участки деформированного хряща. Если этого не сделать, то последующие меры, принятые для усиления регенерации хрящевой ткани могут привести к росту деформированного хряща и нарушению его опорных функций.

При поверхностных повреждениях можно добиться полного восстановления хряща, применяя сильнодействующие фармакологические средства. За последние сорок лет экспериментальных и клинических работ свою высокую эффективность доказал лишь один единственный препарат – соматотропный гормон (СТГ). Он стимулирует рост хрящевой ткани в 100 раз сильнее, чем введение тестостерона и инсулина. Еще больший эффект оказывает комбинированное введение СТГ и тиреокальцитонина – особого рода гормона щитовидной железы, который усиливает репарацию как костной, так и хрящевой ткани. Исключительная эффективность действия СТГ на репарацию хряща обусловлено тем, что он стимулирует непосредственно деление хондроцитов. Используя СТГ теоретически можно довести количество хондроцитов до любого нужного количества. Они, в свою очередь, восстанавливают матрикс до необходимого объема, синтезируя все его компоненты, начиная с коллагеновых волокон и кончая протеогликанами. Недостатком СТГ является то, что его нельзя применять местно, вводя непосредственно в зону поражения хрящевой ткани, поскольку действует он опосредованно. СТГ вызывает образование в печени инсулиноподобного фактора роста (ИРФ-1) который и оказывает сильнейший анаболический эффект. Парентеральное (инъекционное) его введение вызывает рост не только поврежденных хрящей, но и нормальных тоже, а это нежелательно, ведь в организме существуют кости, в которых хрящевые зоны роста не закрываются на протяжении всей жизни. Длительное введение больших доз СТГ в сформировавшийся организм может вызвать диспропорции скелета. Хотя следует отметить, что на пораженный хрящ он действует сильнее, и явных деформаций скелета при лечении СТГ в научной литературе не встречается.
В последние годы синтезирована лекарственная формы ИРФ-1, которую все шире применяют инъекционно вместо соматотропина. Поскольку ИРФ-1 действует непосредственно на ткани (в т.ч. и на хрящевую), то возникает заманчивая перспектива использовать его для местного введения (электрофорез, ультразвук и т.д.). Такое применение ИРФ-1 позволило бы локализовать его действие местом пораженного хряща и исключить действие на здоровые хрящи организма.
Неплохое действие на восстановление хряща и окружающего его соединительной ткани оказывают анаболические стероиды (АС). По эффективности они стоят на втором месте после ИРФ-1 и соматотропного гормона, хотя непосредственно деления хондроцитов они не вызывают. Анаболические стероиды, однако, ускоряют физиологическую регенерацию и потенцируют анаболическое действие инсулина и других эндогенных анаболических факторов, блокируют действие катаболических гормонов (глюкокортикоидов). Практическое применение АС в хирургической и травматологической практике доказало их высокую эффективность. Очень жаль, что до сих пор не разработаны лекарственные формы АС для локального применения. Это позволило бы создавать высокие концентрации лекарственного вещества именно в месте повреждения и предотвращать системные (на уровне всего организма) побочные действия. К сожалению, исследования в данной сфере никем не финансируются из-за причисления АС к допинговым средствам в спорте.

Некоторые исследователи в области молекулярной биологии представили очень убедительный материал, доказывающий, что стимуляторы 2-адренергических рецепторов способны симулировать анаболические эффекты соматомединов и, в частности, по отношению к хрящевой ткани. Механизм такого действия не вполне ясен. Не исключено, что просто повышается чувствительность печени к эндогенному соматотропному гормону и возрастает синтез в печени ИРФ-1. Одним из наиболее сильных избирательных стимуляторов 2-адренергических рецепторов является кленбутерол. Этот препарат не обладает гормональными эффектами и, в то же время, оказывает хорошее анаболическое действие. Подобно ИРФ-1 он стимулирует рост хрящевой ткани и может с успехом применяться в посттравматическом восстановительном периоде.

Препаратов, стимулирующих 2-адренорецепторы много, но особо хотелось бы отметить такое старое и проверенное средство как адреналин. Адреналин – гормон мозгового вещества надпочечников даже при длительном курсовом применении не вызывает привыкания. В больших дозах адреналин воздействует в основном на а-адренорецепторы. Происходит сужение сосудов кожи, повышение артериального давления, подъем уровня сахара в крови. Малые дозы адреналина не затрагивают а-адренорецепторов, стимулируют 2-адренорецепторы. Расширяются сосуды мышц, снижаются уровень сахара в крови и артериальное давление. Развивается общее анаболическое действие и, в особенности по отношению к хрящевой ткани. Ежедневное введение малых (именно малых!) доз адреналина хорошо зарекомендовало себя как средство, способствующее регенерации.

Некоторые витамины в больших фармакологических дозировках способны существенно увеличить выброс в кровь эндогенного соматотропина. Пальму первенства здесь держит никотиновая кислота (витамин РР). Внутривенное введение сравнительно небольших доз никотиновой кислоты способно увеличить базальную секрецию СТГ в 2-3 раза. Увеличивает секрецию гормона роста витамин К, только применять его необходимо в умеренных дозах, чтобы не повысить чрезмерно свертываемость крови.

Несмотря на то, что матрикс хрящевой ткани является производным хондроцитов, изменение его состояния может улучшить и их деятельность. Состояние матрикса можно улучшить, применяя большие дозы аскорбиновой кислоты в сочетании с витамином Р. Особенно сильно аскорбиновая кислота влияет на состояние коллагеновых структур. Поэтому ее традиционно используют для усиления синтеза коллагена, особенно в сочетании с глицином и анаболическими стероидами. Применяется также сочетание больших доз аскорбиновой кислоты с лизином, аланином и пролином.

Состояние хрящевого матрикса внутрисуставных хрящей можно временно улучшить с помощью веществ, вводимых в синовиальную жидкость. В последние годы особенно широко используется введение в сустав 15% раствора поливинилпирролидона, где он пребывает приблизительно 5-6 дней, затем процедуру повторяют, иногда несколько раз. Поливинилпирролидон служит своеобразным временным “протезом” внутрисуставной жидкости. Он улучшает трение внутрисуставных поверхностей, временно снимая нагрузку с суставного хряща. В случаях тяжелых, необратимых повреждениях хрящевой ткани используется протезирование, которое по мере развития оперативной техники дает все более обнадеживающие результаты. Уже никого не удивишь протезами межпозвонковых дисков. Делаются небезуспешные попытки протезирования внутрисуставных хрящей (менисков) коленных суставов.

Очень перспективным направлением является введение в поврежденные участки взвеси хондроцитов. Слабая регенерация хрящевой ткани, как мы помним, обусловлена малым числом хрящевых клеток (хондроцитов) на единицу массы хрящевой ткани. Чужеродные хондроциты, будучи введенными, скажем, в полость сустава не вызывают реакции отторжения, т.к. обладают слабой иммунногенной активностью. Они способны размножаться и образовывать новую хрящевую ткань. Применяют взвесь хондроцитов, полученную из хрящей крупного рогатого скота, умерших людей.

Факторы регуляции метаболизма хрящевых тканей

Регуляция метаболизма хрящевой ткани происходит под действием механической нагрузки, нервных и гормональных факторов. Периодическое давление на хрящевую ткань и ослабление нагрузки являются постоянно действующими факторами диффузии растворенных в воде питательных веществ, продуктов метаболизма и гормонально-гуморальных регуляторов из капилляров надхрящницы, имеющей рецепторы и эффекторы, или синовиальной жидкости суставов. Кроме того, хондроциты имеют циторецепторы к ряду гормонов, циркулирующих в крови, — соматотропному гормону (СТГ), тироксину, инсулину, глюкокортикоидам, эстрогенам и др.

Гормоны гипофиза— соматотропин и пролактин — стимулируют рост хрящевых тканей, но не влияют на их созревание. Гормоны щитовидной железы — тироксин и трийодтиронин — ускоряют цитодифференцировку хондроцитов, но ингибируют ростовые процессы в хрящах. Гормоныщитовидной и околощитовидной желез— кальцитонин и паратгормон — оказывают сходное действие на метаболизм хрящей, способствуют стимуляции ростовых процессов, но в меньшей степени их созреванию. Гормон эндокринных островков поджелудочной железы — инсулин — усиливает цитодифференцировку клеток скелетогенной мезенхимы, а на этапах постнатального онтогенеза оказывает ростовое и митогенное действие. Гормоныкоры надпочечников— глюкокортикоиды иженский половойгормон эстроген — ингибируют в хондроцитах биосинтез коллагена и гликозаминогликанов, а в раннем постнатальном периоде их высокие концентрации способствуют старению хрящевой ткани и деструктивным изменениям в ней.Мужской половойгормон — тестостерон — стимулирует биосинтез несульфатированных гликозаминогликанов, что приводит к снижению процессов созревания хрящевой ткани.

В целом необходимо отметить, что гормоны регулируют специфические метаболические процессы в хондроцитах, но реактивность хондроцитов к их действию зависит как от состояния эндокринного статуса организма (норма, дефицит или избыток гормонов), так и структурно-функционального состояния самих хондроцитов.

Заключение

Наиболее перспективным методом искусственной регенерации хрящевой ткани представляется использование эмбриональных (зародышевых) хрящевых клеток. Они вообще не вызывают иммунного ответа и, размножаясь, вызывают образование новой хрящевой ткани. К сожалению, все работы с зародышевыми клетками носят пока экспериментальный характер и не вошли в широкую практику. Но это – дело недалекого будущего. Проблема репарации хрящевой ткани в скором времени должна быть решена. Для этого уже есть все предпосылки.

Сайттағы материалды алғыңыз келе ме?

ОСЫНДА БАСЫҢЫЗ

Бұл терезе 3 рет ашылған соң кетеді. Қолайсыздық үшін кешірім сұраймыз!