Единицы измерения информации

№ 11

Единицы измерения информации

Информацию, которую получает человек, можно считать мерой уменьшения неопределенности знания (энтропией). Если сообщение приводит к уменьшению неопределенности наших знаний, то можно говорить, что такое сообщение содержит информацию. За единицу количества информации принято такое количество информации, которое содержит сообщение, уменьшающее неопределенность знания в два раза. Такая единица является минимальной и названа бит. Существуют более крупные единицы измерения информации:

1 Байт=8 бит,

1 Килобайт=1024 байт=210 байт, 1 Мегабайт = 1024 Кбайт= 220 байт,

1 Гигабайт=1024 Мбайт=230 байт, 1Терабайт=1024 Гбайт= 240 байт,

1 Петабайт=1024 Тбайт=250 байт, 1Экзабайт=1024 Пбайт= 260 байт.

Формула Шеннона

Существует множество ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета несимметрична (одна сторона тяжелее другой), то при ее бросании вероятности выпадения “орла” и “решки” будут различаться. Формулу для вычисления количества информации в случае различных вероятностей событий предложил К. Шеннон в 1948 году. В этом случае количество информации определяется по формуле:

где I – количество информации;
N – количество возможных событий;
рi – вероятность i-го события.

№12

Использование ЭВМ в медицинской практике Сложные современные исследования в медицине немыслимы без применения вычислительной техники. К таким исследованиям можно отнести компьютерную томографию, томографию с использованием явления ядерно-магнитного резонанса, ультрасонографию, исследования с применением изотопов. Количество информации, которое получается при таких исследования так огромно, что без компьютера человек был бы неспособен ее воспринять и обработать. Как известно, компьютерная томография представляет собой метод рентгенографического исследования, позволяющий при помощи специальной технологии получать рентгенограммы человеческого тела по слоям и запоминать эти снимки в памяти компьютера после специальной обработки; дает возможность установить локализацию патологического процесса, оценить результаты лечения, в том числе, лучевой терапии, выбрать подходы и объем оперативного вмешательства. Для этой цели используются специальные аппараты (в том числе, отечественный рентгеновычислительный томограф СРТ — 1000) с вращающейся рентгеновской трубкой, которая перемещается вокруг неподвижного объекта, “построчно” обследуя все тело или его часть. Томограф здесь выступает в качестве периферийного устройства, подключенного через последовательный порт к PC.

 

№13

Способы представления информации. Применяют три основных способа: 1) буквенно-цифровой; 2) в виде специальных условных знаков; 3) с помощью линий, площадей, геометрических фигур.  Буквенно-цифровой способ представления информации широко распространен, как наиболее привычный и удобный для восприятия. Символы кода (буквы, цифры) объединяются в более сложные кодовые группы (слова, числа, таблицы), которые отображают действительные предметы или отвлеченные понятия.

  • Способ представления информации в виде специальных условных знаков применяют для упрощения понимания и запоминания информации при визуальных способах. При этом часто используют специальные символы, особенно тогда, когда воспроизводимое понятие или объект имеют характерные изобразительные формы. Этот способ удобен для восприятия логических взаимосвязей отдельных элементов систем, для отображения решения, состояния управляемых объектов, типов объектов. Максимальное число различных символов ограничивается памятью оператора. Способ представления информации с помощью линий, площадей, геометрических фигур применяют тогда, когда некоторые виды информации невозможно отобразить на визуальных индикаторах с помощью буквенно-цифровых знаков или символов. Так, авиалинии, изотермы, дороги, топографические контурные линии, графики функций, метеорологические карты лучше всего воспроизводить прочерчиванием линий.

Система счисления – это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Различают два типа систем счисления: позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа; непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

В системе счисления различают понятия числа и цифры:

число — это некоторая абстрактная сущность для описания количества (определение из Википедии);

цифры — это знаки, используемые для записи чисел.

Позиционные системы счисления — это системы счисления, в которых значение цифры напрямую зависит от её положения в числе.

Например, число 21 обозначает двадцать один, 12 — двенадцать.

В позиционных системах счисления Позиционные системы счисления позволяют легко производить арифметические расчёты.

Представление чисел с помощью арабских цифр — самая распространённая позиционная система счисления, она называется «десятичной системой счисления». Десятичной системой она называется потому, что использует десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Заметьте: максимальная цифра (9) на единичку меньше количества цифр (10).

Для составления машинных кодов удобно использовать не десятичную, а двоичную систему счисления, содержащую только две цифры, 0 и 1. Обратите внимание, что в двоичной системе максимальная цифра 1.

Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: 28; 102; 24А16 и т.д.

В десятичной системе основание равно десяти, в двоичной системе – двум, ну а в восьмеричной и шестнадцатеричной – соответственно, восьми и шестнадцати. То есть в р-ичной системе счисления количество цифр равно р и используются цифры от 0 до р-1.

В общем случае в позиционной системе счисления числа представляются следующим образом: (anan − 1…a0)f, где a0,a1,…,an — цифры, а f — основание системы счисления. Если используется десятичная система, то основание f можно опустить.

№14

Логические элементы – это электронные устройства, предназначенные для обработки информации представленной в виде двоичных кодов, отобpажаемыx напpяжeниeм (сигналом) выcoкого и низкого уpовня. Логические элементы реализyют логические функции И, ИЛИ, НЕ и их комбинации. Указанные логические операции выполняются с помощью электронных схем, входящих в состав микросхем. Из логических элементов И, ИЛИ, НЕ, можно сконстpуировать цифровое электронное устройство любой сложности.

Логические элементы могут выполнять логические функции в режимах положительной и отрицательной логики. В режиме положительной логики логической единице соответствует высокий уровень напряжения, а логическому нулю – низкий уровень напряжения. В режиме отрицательной логики наоборот логической единице соответствует низкий уровень напряжения, а логическому нулю – высокий.

Если в режиме положительной логики логический элемент, реализует операцию И, то в режиме отрицательной логики выполняет операцию ИЛИ, и наоборот. И если в режиме положительной логики – И-НЕ, то в режиме отрицательной логики – ИЛИ-НЕ.

Условное графическое обозначение логического элемента представляет собой прямоугольник, внутри которого ставится изображение указателя функции. Входы изображают линиями с левой стороны прямоугольника, выходы элемента – с правой стороны. При необходимости разрешается располагать входы сверху, а выходы снизу. У логических элементов И, ИЛИ может быть любое начиная с двух количество входов и один выход. У элемента НЕ один вход и один выход. Если вход обозначен окружностью, то это значит, что функция выполняется для сигнала низкого уровня (отрицательная логика). Если окружностью обозначен выход, то элемент производит логическое отрицание (инверсию) результата операции, указанной внутри прямоугольника.

Все цифровые устройства делятся на комбинационные и на последовательностные. В комбинационных устройствах выходные сигналы в данный момент времени однозначно определяются входными сигналами в тот же момент. Выходные сигналы последовательностного устройства (цифрового автомата) в данный момент времени определяются не только логическими переменными на его входах, но еще зависят и от предыдущего состояния этого устройства. Логические элементы И, ИЛИ, НЕ и их комбинации являются комбинационными устройствами. К последовательностным устройствам относятся триггеры, регистры, счетчики.

Логический элемент И (рис. 1) выполняет операцию логического умножения (конъюнкцию). Такую операцию обозначают символом /\ или значком умножения (·). Если все входные переменные равны 1, то и функция Y=X1·X2 принимает значение логической 1. Если хотя бы одна переменная равна 0, то и выходная функция будет равна 0.

Таблица 1
Y=X1·X2X1X2Y
000
010
100
Рис. 1111

Наиболее наглядно логическая функция характеризуется таблицей, называемой таблицей истинности (Табл. 1). Талица истинности содержит всевозможные комбинации входных переменных Х и соответствующие им значения функции Y. Количество комбинаций составляет 2n, где n – число аргументов.

Логичеcкий элeмент ИЛИ (рис. 2) выполняет операцию логического сложения (дизъюнкцию). Обозначают эту операцию символом \/ или знаком сложения (+). Функция Y=X1\/X2 принимает значение логической 1, если хотя бы одна переменная равна 1. (Табл. 2).

Таблица 2
Y=X1\/X2X1X2Y
000
011
101
Рис. 2111

Логический элемент НЕ (инвертор) выполняет операцию логического отрицания (инверсию). При логическом отрицании функция Y принимает значение противоположное входной переменной Х (Табл. 3). Эту операцию обозначают .

Таблица 3
Y=X1Y
01
Рис. 310

Кроме указанных выше логических элементов, на практике широко используются элементы И-НЕ, ИЛИ-НЕ, Исключающее ИЛИ.

Логичеcкий элемeнт И-НЕ (рис. 4) выполняет операцию логического умнoжения над входными переменными, а затем инвертирует полученный результат и выдаёт его на выход.

Таблица 4
X1X2Y
001
011
101
Рис. 4110

Логический элемент ИЛИ-НЕ (рис. 5) выполняет операцию логического сложения над входными переменными, а затем инвертирует полученный результат и выдаёт его на выход.

Таблица 5
X1X2Y
001
010
100
Рис. 5110

Логический элемент Исключающее ИЛИ представлен на рис. 6. Логическая функция Исключающее ИЛИ (функция «неравнозначность» или сумма по модулю два) записывается в виде и принимает значение 1 при X1≠X2, и значение 0 при X1=X2=0 или X1=X2=1 (Табл. 6).

Таблица 6
Y=X1X2X1X2Y
000
011
101
Рис. 6110

Любой из выше перечисленных элементов можно заменить устройством, собранным только из базовых двухвходовых элементов ИЛИ-НЕ или И-НЕ. Например: операция НЕ (рис. 7, а) приX1 = X2 = X; операция И (рис. 7, б) .

Рис. 7

Интегральные логические элементы выпускаются в стандартных корпусах с 14 или 16 выводами. Один вывод используется для подключения источника питания, еще один является общим для источников сигналов и питания. Оставшиеся 12 (14) выводов используют как входы и выходы логических элементов. В одном корпусе может находится несколько самостоятельных логических элементов. На рисунке 8 показаны условные графические обозначения и цоколевка (нумерация выводов) некоторых микросхем.

К155ЛЕ1 К155ЛА3 К155ЛП5

Рис. 8

Базовый элемент транзисторно-транзисторной логики (ТТЛ). На рисунке 9 показана схема логического элемента И-НЕ ТТЛ с простым однотранзисторным ключом.

Рис. 9

Простейший логический элемент ТTЛ строится на базе многоэмиттерного транзистор VT1. Пpинцип дейcтвия такого транзистора тот же, что и у обычного биполяpного транзистора. Oтличие заключается в том, что инжекция носителей заряда в базу осуществляется через несколько самостoятельных эмиттерных р-n-переходов. При поступлении на входы логической единицы U1вх, запираются все эмиттерные переxоды VT1. Ток, текущий через резистор Rб, замкнется через открытые р-n-переходы: коллектoрный VT1 и эмиттерный VT2. Этoт ток откpоет транзиcтор VT2, и напряжение на его выходе станет близким к нулю, т. е. Y=U0вых. Если хотя бы на один вход (или на все входы) VT1 будет подан сигнал логического нуля U0вх, то ток, текyщий по Rб, замкнeтся через откpытый эмиттерный переход VT1. Пpи этoм входной ток VT2 будет близoк к нулю, и выходной транзистоp окажется запеpтым, т. е. Y=U1вых. Таким образом, рассмотренная схема осуществляет логическую операцию И-НЕ.

№15

Система счисления — это совокупность правил наименования и записи чисел.
В любой системе счисления для представления чисел выбираются некоторые символы (цифры, буквы, черточки и т. д.), которые называются цифрами.

Самая простая система счисления — единичная, или унарная. В ней используется только один символ: палочка, камушек и т. д.

Такая система счисления использовалась в основном народами, не имеющими письменности, примерно 10—11 тыс. лет до н. э. Но и сейчас такой системой счисления пользуются, например, отмечая зарубками количество прошедших дней.

Системы счисления делятся на две группы: позиционные и непозиционные системы счисления

Непозиционная система счисления — система счисления, в ко- торой значение каждой цифры не зависит от ее положения в записи числа.

Позиционная система счисления — система счисления, в которой значение каждой цифры зависит от ее положения в записи числа.

К позиционным системам счисления относятся десятичная, двоичная, шестидесятеричная и другие системы счисления. Название позиционной системы счисления зависит оттого, сколько символов используется для записи чисел.

Основанием позиционной системы счисления называется количество символов, используемых для записи чисел. Например, в двоичной системе счисления используются две цифры 0 и 1; основание ее равно 2. В восьмеричной системе счисления восесмь цифр (0,1,…7); основание — 8.

В системах счисления с основанием больше 10 для представления чисел после цифр 0, 1, 2,…, 9 используют латинские буквы: А (10), В (11), С (12) и т. д. Так, например, алфавит шестнадцатеричной системы счисления выглядит следующим образом: 0, 1, 2,…,9, А, В, С, D, E, F. Основание этой системы счисления — 16.

№16

Арифметические действия в двоичной системе производится по тем же правилам что и в десятичной системе счисления. Однако так как в двоичной системе счисления используются только две цифры 0 и 1, то арифметические действия выполняются проще, чем десятичной системе.

Сложение двоичных чисел.

Сложение  выполняется поразрядно столбиком, начиная с младшего разряда и используя таблицы двоичного сложения:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10.

При сложении необходимо помнить, что 1+1 дают нуль в данном разряде и единицу переноса в старший.
    
     Пример 3.5. Сложить два числа:

Вычитание двоичных чисел.

Вычитание выполняется поразрядно столбиком, начиная с младшего разряда и используя таблицы двоичного  вычитания:
0 – 0 = 0
1 – 0 = 1
1 – 1 = 0
10 – 1 = 1.
Пример 3.6. Найти разность двух чисел:

Т.е. при вычитании двоичных чисел в случае необходимости занимается 1 из старшего разряда, которая равна двум единицам младшего разряда.
    Умножение двоичных чисел.

Умножение в двоичной системе производится по тому же принципу что и в десятичной системе счисления, при этом используется таблица двоичного умножения:
0 * 0 = 0
0 * 1 = 0
1 * 0 = 0
1 * 1 = 1 .
Пример 3.7. Найти произведение двух чисел:

Как видно из приведенных примеров, операция умножения может быть представлена как операции сдвига и суммирования.

Деление двоичных чисел.

Деление в двоичной системе производится вычитанием делителя со сдвигом вправо, если остаток больше нуля.
     Пример 3.8. Найти частное  двух чисел если:
1. Делимое больше делителя:

  1. Делимое меньше делителя:

Как видно из приведенных примеров, операция деления может быть представлена как операции сравнения, сдвига и суммирования.

№17

Выполнение арифметических действий в любых позиционных системах счисления производится по тем же правилам, которые используются в десятичной системе счисления.

Так же, как и в десятичной системе счисления, для выполнения арифметических действий необходимо знать таблицы сложения (вычитания) и умножения. Ниже представлены данные таблицы для двоичной системы счисления

Таблица 1

СложениеВычитаниеУмножение
0 + 0 = 00 – 0 = 00 ∙ 0 = 0
0 + 1 = 11 – 0 = 10 ∙ 1 = 0
1 + 0 = 11 – 1 = 01 ∙ 0 = 0
1 + 1 = 1010 – 1 = 11 ∙ 1 = 1

Пользуясь приведенными таблицами, произведем арифметические операции над двоичными числами.

В тех случаях, когда занимается единица старшего разряда, она дает две единицы младшего разряда. Если занимается единица через несколько разрядов, то она дает единицы во всех промежуточных нулевых разрядах и две единицы в младшем нулевом разряде.

Рассмотрим операции умножения и деления двоичных чисел.

Зная операции двоичной арифметики, можно переводить числа из двоичной системы счисления в любую другую.

Пример: Перевести число 1011110112 в десятичную систему счисления.

Поскольку 1010 = 10102, запишем

Полученные остатки, =10012 = 910, =1112 = 710, =112 = 310. Искомое число 1011110112 = 37910.

В случае перевода чисел из одной недесятичной системы в другую возникает сложность выполнения действий в недесятичной системе счисления. В этом случае удобнее может быть делать перевод в два этапа mà10àq, где m и– основания систем счисления соответственно.

Двоично-восьмеричные и двоично-шестнадцатеричные преобразования

Двоичная система счисления удобна для выполнения аппаратными средствами микропроцессора арифметических действий, но неудобна для восприятия человеком, поскольку требует много разрядов. Поэтому в вычислительной технике помимо двоичной системы счисления широкое применение нашли восьмеричная и шестнадцатеричная системы счисления.

Рассмотрим перевод чисел из двоичной системы счисления в восьмеричную.

Запишем число x в полиномиальной форме. Получим

Разделим обе части полученного выражения на 8. Учитывая, что 8 = 23, получим

.

Таким образом, остаток от деления , что является двоичным разложением десятичного числа, лежащего в диапазоне [0; 7] (для изображения данной десятичной цифры в двоичной системе счисления требуется 3 разряда).

Таким образом, чтобы преобразовать двоичное число в восьмеричное, нужно объединить двоичные цифры в группы по 3 разряда справа налево. При необходимости в начале исходного числа нужно добавить незначащие нули. Затем каждая триада заменяется восьмеричной цифрой.

Пример: Преобразовать число 11011102 в восьмеричную систему счисления.

Объединяем двоичные цифры триады справа налево. Получаем

001 101 1102 = 1568.

Аналогичным образом производятся преобразования из двоичной системы счисления в шестнадцатеричную, только двоичные цифры объединяются в группы по 4 разряда (тетрады).

Пример: Преобразовать число 11011102 в шестнадцатеричную систему счисления.

Объединяем двоичные цифры триады справа налево. Получаем

0110 11102 = 6E16.

 

№18

Базовая конфигурация персонального компьютера — это минимальный комплект аппаратных средств, которых достаточно для работы с компьютером. На сегодняшний день для настольных компьютеров базовой считается конфигурация, содержащая четыре устройства:

– монитор;

– системный блок;

– мышь;

– клавиатура.

Системный блок – основной блок компьютерной системы. Именно в нем располагаются внутренние устройства компьютера. Те устройства, которые подключаются к системному блоку снаружи, называются внешними. Системный блок включает в себя процессор, оперативную память, накопители на жестких, оптических и гибких магнитных дисках, а также другие устройства.

Монитор – это устройство для визуального воспроизведения графической и символьной информации, которое является устройством ввода

Мышь — это устройство «графического» управления. Перемещая мышь по коврику, вы перемещаете по экрану указатель мыши, с помощью которого можно указывать и выбирать объекты на экране. При помощи клавиш мыши (клавиш может быть две или три), можно задать определенный тип операций с объектом.

Клавиатура — это клавишное устройство, которое предназначено для ввода в компьютер информации и управления его работой. Ввод информации осуществляется в виде алфавитно-цифровых символьных данных

Системный блок

В системном блоке размещаются основные устройства ПК, осуществляющие переработку и хранение информации. Непосредственно переработку информации производит процессор, размещенный на материнской плате системного блока. Основная характеристика процессора – его быстродействие, иначе называемое «тактовая частота». Единица измерения тактовой частоты – мегагерц (МГц), Современные офисные ПК оснащены процессорами с тактовой частотой 200…400 МГц. Кроме того, на материнской плате системного блока расположено оперативное запоминающее устройство (ОЗУ), или оперативная память1. ОЗУ хранит информацию, в данный момент перерабатываемую процессором. Необходимо отметить, что информация в оперативной памяти хранится только при включенном ПК. После выключения ПК вся информация из ОЗУ пропадает. Основная характеристика ОЗУ – объем хранимой информации. Современные офисные ПК оснащены ОЗУ объемом 32…64 Мб. Постоянное хранение информации производится на жестком диске2, который также называют «винчестер». Основная характеристика жесткого диска – объем хранимой информации. Современные офисные ПК оснащены жестким диском объемом 3…7 Гб. Для работы с внешними носителями информации системный блок имеет 1 или 2 дисковода для дискет3, а также устройство для работы с лазерными компакт-дисками4. В последнее время используются почти исключительно дискеты размером 3,5″ с объемом хранимой информации 1,44 Мб. Иногда еще встречаются дискеты размером 5″ с объемом хранимой информации до 1,2 Мб. Компакт-диск может содержать информацию объемом до 640 Мб. Кроме перечисленных устройств, в системном блоке расположены и другие устройства, обеспечивающие работу ПК: блок питания, видеоплата, контроллеры, платы управления внешними устройствами.

Монитор

Монитор служит для отображения информации. Подавляющее число современных мониторов цветные. Большинство мониторов оснащено электронно-лучевой трубкой и работает по принципу телевизора. Монитор имеет собственную кнопку включения и выключения, а также кнопки или регуляторы для настройки яркости, контрастности и размера изображения. Современные офисные ПК имеют мониторы с размером экрана по диагонали 15″ (38 см) или 17″ (43 см).

Состав системного блока

Системный блок включает в себя множество частей и компонентов. Кратко рассмотрим большинство из них.

  1. Корпус – один из важных компонентов, входящий в число элементов системного блока: на корпусе компьютера крепятся все остальные детали. Корпуса различаются между собой размерами и форм-факторами. При выборе корпуса для системника следует обратить внимание на некоторые детали.

Чем корпус больше, тем проще в нем будет разместить остальные элементы системного блока. А чем тяжелее, тем толще стенки он имеет, что позволит наладить хорошее охлаждение и невысокий уровень шума. Компьютерная помощь Комполайф рекомендует использовать корпуса только известных брэндов таких как Thermaltake, Chieftec, InWin и др.

  1. Блок питания – возможно, самая важная деталь системного блока ПК. Считается, что лучше сэкономить на любой другой детали, но только не на блоке питания. Может показаться немного странным, но с большой долей вероятности качество блока питания можно определить по весу – чем тяжелей блок питания, тем лучше. Качественные компоненты блока питания: радиаторы, конденсаторы и трансформаторы; довольно тяжелые элементы.

Блок питания занимается обеспечением электрического питание всех остальных компонентов компьютера. От него напрямую зависит, как долго проработают все остальные комплектующие. Из-за недостаточно качественного блока питания работа всего компьютера может быть нестабильной, также это может стать причиной поломки дорогостоящих элементов.

  1. Процессор (CPU – центральный процессор) – это главный вычислительный элемент персонального компьютера. Все программы состоят из огромной последовательности микрокоманд, и именно процессор выполняет эти команды.

От быстродействия процессора в первую очередь зависит производительность и быстрота работы всего ПК (это обязательно необходимо учесть, если решили переустановить windows на более современную версию). Тактовая частота, на которой работает процессор, архитектура и количество ядер определяют быстродействие процессора.

Многие годы на мировом рынке процессоров безраздельно доминируют два основных конкурента: AMD и Intel. И ближайшее время эта ситуация вряд ли изменится.

  1. Материнская плата – один из компонентов ПК, который входит в число основных. Материнская плата объединяет все компоненты системного блока. Кроме этого она включает в себя дополнительные компоненты: встроенная видеокарта, сетевой адаптер, звуковая карта, устройства ввода-вывода и др.

Неправильно подобранная материнская плата может негативным образом сказаться на работе ПК в целом, несмотря на то, что остальные комплектующие будут мощными сами по себе.

  1. Корпусный вентилятор – используется для охлаждения системника. Он необязателен, но желателен для поддержания приемлемой температуры внутри.
  2. Планки оперативной памяти (ОЗУ) – это быстродействующая память компьютера. После выключения компьютера вся информация, находящаяся в ней, удаляется.

Учитывая всё возрастающие потребности современных программ, игр и приложений, можно считать, что чем больше объём оперативной памяти, тем будет лучше. На сегодняшний день минимальный объемом оперативной памяти, устанавливаемой в новый компьютер, будет 4 Гигабайта.

  1. Видеокарта – устройство, которое обрабатывает и выводит графическую информацию на монитор. Каждая видеокарта имеет свой собственный графический процессор, который занимается обработкой информации: 2D и 3D. Видеопроцессор существенно снижает вычислительную нагрузку на CPU (центральный процессор).
  2. Сетевая карта – элемент системного блока, необходимый для соединения компьютера с локальной сетью или сетью Интернет. Последнее время сетевые платы интегрированы (встроены) в материнские платы.
  3. Оптический накопитель (CD/DVD) – устройство для чтения и записи оптических дисков. Между собой отличаются типом поддерживаемых дисков, а также скоростью чтения и записи.
  4. Жесткий диск (harddisk, HDD, винчестер) – это устройство долговременной памяти. При выключении компьютера данные не удаляются. Быстрота работы жесткого диска намного ниже, чем у оперативной памяти, а объём намного выше.

 

№19

Запоминающее устройство – носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям

Внутренняя память компьютера включает в себя оперативную памяти, постоянную памяти, кэш-память.

Оперативная память (оперативное запоминающее устройство — ОЗУ или Random Access Memory — RAM) — энергозависимое, быстродействующее

запоминающее устройство, предназначенное для хранения информации (программ и данных), непосредственно участвующей в вычислительном процессе на текущем этапе функционирования ПК. ОЗУ — энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется.

Постоянная память (постоянное запоминающее устройство — ПЗУ или Read Only Memory — ROM) используется для хранения неизменяемой ин­формации: загрузочные программы ОС, программы тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS -Basic Input-Output System) и др. Из ПЗУ можно только считывать информацию.

Кэш-память — высокоскоростная память сравнительно большой емкости, которая является буфером между оперативной памятью и микропроцессором и позволяющая увеличить скорость выполнения операций. В кэш-памяти хранятся данные, которые микропроцессор получил и будет использовать в бли­жайшие такты своей работы. Микропроцессоры, начиная от МП 80486, имеют свою встроенную кэш-память (или кэш-память 1-го уровня). Кэш-память 2-го уровня размещается на материнской плате вне микропроцессора и хранит дан­ные и результаты, обрабатываемые процессором в текущий момент времени.

Внешняя память компьютера предназначена для долговременного хране­ния информации. Внешние ЗУ также называют накопителем.

Накопители бывают внешними (собственный корпус и источник питания), встроенными в корпус компьютера, со сменными и несменными носителями, с носителями разной формы (диски, ленты). Накопители имеют разные характеристики: максимально возможный объем хранимой информации, время доступа.

Накопители на магнитных лентах называются стримерами. В современ­ных стримерах используются специальные кассеты (картриджи) с магнит­ной лентой. Стримеры имеют разные стандарты, определяющие интерфейс с компьютером, формат магнитной ленты, методы кодирования и сжатия.

Отличительной особенностью накопителей на дисках является использо­вание в качестве носителей информации дисков разного диаметра, отличаю­щихся форм-фактором. Выпускаются носители с форм-фактором (размером) 1,8″, 2,5″, 3,5″, 5,25″.

Жесткие несменные диски называются винчестерами. Они представляют собой систему, состоящую из механического привода головок чтения-записи, нескольких носителей и контроллера, обеспечивающего работу всего уст­ройства. Магнитная головка (несколько магнитных головок в специальном позиционере) является одной из наиболее важных частей устройства. Носи­тель информации состоит из нескольких дисков, каждый из которых имеет две рабочие поверхности. При записи информации используются магнитные свойства слоя, нанесенного на поверхность.

Гибкие диски (floppy) в зависимости от размера бывают двух видов — 5,25″. и 3,5″. Операции чтения/записи осуществляются контактным способом,

т. е. при соприкосновении магнитной головки устройства с поверхностью носителя. У таких носителей невысокая плотность записи, скорость обмена, значительное время доступа.

Магнитооптические диски имеют различную емкость от 128 Мбайт до 640 Мбайт. Запись производится после нагревания лазером магнитного слоя до определенной температуры. Надежность хранения информации обес­печивается тем, что при обычной температуре информация не подвержена действию внешних магнитных полей.

Устройства CD-ROM используют носители емкостью до 650 Мбайт, пред­ставляющие собой диски со светоотражающим слоем на одной стороне, где хранится информация. На диск нанесена дорожка-спираль от центра к краю диска, состоящая из отражающих и не отражающих свет точек; считывание производится лазерным лучом.

Накопители CD-R позволяют лишь однократно записывать информацию на диски. Луч лазера прожигает пленку на поверхности диска, меняя его отражающую способность. Перезапись при этом невозможна. Такие диски считываются на любом приводе CD-ROM.

Накопители CD-RW позволяют делать многократную запись на диск. Здесь используются свойство рабочего слоя переходить под воздействием лазерного луча в кристаллическое или аморфное состояние, имеющие разную отражательную способность.

Накопители DVD предназначены для хранения видео, аудио, высокого качества, компьютерной информации большого объема. Плотность записи выше, чем у обычных CD-ROM.+

Накопители DVD-RAM позволяют записывать и перезаписывать ин­формацию.

Накопители на сменных жестких дисках используют технологию винчес­теров. Параметры таких устройств приближаются к параметрам устройств с жесткими несъемными дисками.

В последние годы в ПК стали использоваться новые ЗУ — флэш-память. Модули или карты флэш-памяти могут устанавливаться прямо в разъемы материнской платы. Флэш-память обладает рядом преимуществ в использова­нии: высокая надежность и ударопрочность, малое энергопотребление. Одним из основных преимуществ флэш-памяти является ее компактность, поэтому она постепенно все активнее применяется для хранения и переноса данных.

№20

Виды и назначение устройств ввода и вывода информации.

Клавиатура (keyboard) – традиционное устройство ввода данных в компьютер.

Джойстик представляет собой ручку управления и наиболее часто используется в компьютерных играх. Призваны усилить реалистичность во время игры-симулятора машины, самолёта, космического корабля и пр.

Трекбол (шаровой манипулятор) – это шар, расположенный вместе с кнопками на поверхности клавиатуры (перевёрнутая мышь).

Перемещение указателя по экрану обеспечивается вращением шара.

Сенсорный манипулятор. Представляет собой коврик без мыши. В данном случае управление курсором производится простым движением пальца по коврику.

Дигитайзер (графический планшет) Позволяет создавать или копировать рисунки. Рисунок выполняется на поверхности дигитайзера специальным пером или пальцем. Результаты работы производятся на экране монитора.

Сканер– устройство для ввода информации в компьютер с бумажного носителя. Сканеры бывают планшетные, настольные и ручные.

Мышь – устройство ввода информации. Преобразует механические движения по столу в электрический сигнал, передаваемый в компьютер.

Световое перо– с помощью него можно рисовать картинки и писать рукописные тексты, которые сразу попадают на экран.

Поскольку пользователю часто требуется вводить в компьютерную систему новую информацию, необходимы еще и устройства ввода.

принтер-устройство для вывода информации на бумагу. Принтеры бывают матричные (красящая лента), струйные (картридж с чернилами), лазерные (картридж с порошком тонером).

Для получения информации о результатах, необходимо дополнить компьютер устройствами вывода, которые позволяют представить их в доступной человеческому восприятию форме. Наиболее распространенным устройством вывода является монитор, способный быстро и оперативно отображать на своем экране как текстовую, так и графическую информацию.

Микрофон-устройство ввода звуковой информации: голоса или музыки.

Плоттер, или графопостроитель,- это чертежная машина, позволяющая с высокой точностью и скоростью вычерчивать сложные графические изображения большого размера: чертежи, схемы, карты, графики и т.д.

Модем-устройство для соединения компьютеров между собой на больших расстояниях по телефонной линии. С помощью модема можно подключиться к интернету.

Сетевая карта (или карта связи по локальной сети) служит для связи компьютеров в пределах одного предприятия, отдела или помещения находящихся на расстоянии не более 150 метров друг от друга.

 

 

 

 

 

Қажетті материалды таппадың ба? Онда KazMedic авторларына тапсырыс бер

Единицы измерения информации

error: Материал көшіруге болмайды!