Гипероксическая гипоксия

Гипероксическая гипоксия

а) Гипербарическая.

Возникает в условиях избытка кислорода (“голод среди изобилия”). “Лишний” кислород не может потребляться в энергетических и пластических целях. Высокое напряжение кислорода в крови и тканях ведет к окислительной деструкции внутриклеточных митохондириальных структур, что угнетает тканевое дыхание, снижает эффективность улавливания клеткой свободной энергии при биологическом окислении; происходит инактивация многих энзимов, особенно содержащих сульфгидрильные группы. Одно из следствий системной ферментопатии – падение содержания в мозге гамма-аминобутирата, главного тормозного медиатора серого вещества, что обуславливает судорожный синдром кортикального генеза. Высокое напряжение кислорода в тканях приводит к усиленному образованию свободных кислородных радикалов, нарушающих образование дезоксирибонуклеиновой кислоты и тем самым извращающих внутриклеточный синтез белка. Токсическое действие кислорода проявляется, прежде всего, в повреждении тканей, клеток, интерстициальных тканевых структур. Патологические изменения возникают в первую очередь в легочной паренхиме, в которой в наибольшей степени возрастает напряжение кислорода и образование свободных радикалов. Это ведет к дисфункции элементов респиронов (структурно-функциональных единиц легких), возникают воспалительные изменения в легочной ткани, а иногда и некардиогенный отек легких, возможно диффузное микроателектазирование легких из-за разрушения свободно-радикальным окислением системы сурфактанта. Дыхание газовой смесью, парциальное давление кислорода в которой выше, чем 4416 мм рт. ст. приводит к тонико-клоническим судорогам и потере сознания в течение нескольких минут (осложнение при гипербарической оксигенации). Одно из проявлений токсического действия кислорода при гипероксии – гиперкапния, возникающая вследствие угнетения внешнего дыхания и уменьшения удаления СО2 через легкие, а так же вследствие нарушения транспорта СО2 от ткани к легочным капиллярам и скопление СО2 в тканях, что связано со спазмом мелких артерий и артериол, вызванного гипероксией.

Гипероксия, в особенности, гипербароксия при неправильном использовании может вызвать тяжелые расстройства – угнетение внешнего дыхания, возникновение чрезмерной гиперкапнии и кислородной интоксикации. Угнетение внешнего дыхания проявляется резким уменьшением объема легочной вентиляции вплоть до остановки дыхания – “апное сонных телец” (синокаротидных зон). Последнее связано с падением возбуждающей афферентацией и активности респираторных нейронов бульварного дыхательного центра и с их повреждением радикалами кислорода, двуокисью углерода при чрезмерной гиперкапнии и микроциркуляторными расстройствами в мозговой ткани.

Кислородная интоксикация может проявляться в трех клинических формах: общетоксической, легочной и мозговой. Общетоксическая форма возникает при остром воздействии гипероксии высокой степени, проявляется полиорганностью поражения. Повреждается миокард (изменение зубцов ЭКГ, экстрасистолия), возникают спазмы периферических артерий, акропарестезии, снижается осмотическая резистентность эритроцитов, ослабляется фагоцитоз, нарушается микроциркуляция в тканях. При легочной форме кроме расстройств вентиляции наблюдается раздражение слизистых оболочек дыхательных путей (сухость во рту, полости носа, трахеи, сухой кашель, боль и жжение в грудной клетке), токсический бронхит, падение уровня сурфантанта, микро- и макротелектазы, уменьшение дыхательной поверхности легких, повреждение альвеолярно-капиллярных мембран, возможен некардиогенный отек легких. При мозговой форме развиваются судороги, протекающие в две фазы. В первую фазу возникает фибриллярные мышечные подергивания на губах, веках, шее; возможно онемение пальцев рук и ног, потемнение в глазах, сужение полей зрения, головная боль, тошнота, рвота. Во вторую фазу – внезапное развитие эпилептифорных судорог, потеря сознания, последующая амнезия. Судороги длятся одну-две минуты, могут возобновляться после короткой паузы.

б) Нормобарическая.

Может развиться как осложнение при кислородной терапии, когда длительно используются высокие концентрации кислорода, особенно у пожилых людей, у которых со старением падает активность антиоксидантной системы, в частности, ферментов.

При гипероксической гипоксии в результате увеличения рО2 во вдыхаемом воздухе увеличивается общий воздушно-венозный градиент р02, но снижается скорость транспорта кислорода артериальной кровью и скорость потребления кислорода тканями, накапливаются недоокисленные продукты, изменяется кислотно-основное состояние крови.

 

 Дыхательная (легочная, респираторная) гипоксия

Развивается в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушением вентиляционно-перфузионных отношений, затруднении диффузии кислорода. Это наблюдается при болезнях легких, трахеи, бронхов, нарушении функции дыхательного центра; при пневмотораксе, гидротораксе, гемотораксе, воспалении легких, эмфиземе  легких, саркоидозе, асбестозе легких; механической препятствии для поступления воздуха; локальном запустевании сосудов легких, врожденных пороках сердца, избыточном шунтировании легких, недостаточном образовании или нарушении свойств сурфактанта (поверхностно-активного вещества, образующегося в легких и выстилающего альвеолярную стенку). При респираторной гипоксии в результате нарушения газообмена в легких снижается напряжение кислорода в артериальной крови, возникает артериальная гипоксемия, в большинстве случаев сочетающаяся с гиперкапнией.

Сердечно-сосудистая (циркуляторная) гипоксия

Возникает при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей, недостаточному транспорту кислорода к тканям. Важнейший показатель и патогенетическая основа – уменьшение минутного объема сердца. Проявляется в двух формах: ишемической и застойной. Причины: расстройства сердечной деятельности в результате поражения сердечной мышцы (инфаркт, кардиосклероз), перегрузки сердца, нарушении электролитного баланса, экстракардиальной регуляции; действия механических факторов, затрудняющих работу сердца (тампонада, облитерация полости перикарда); гиповолемия (массивная кровопотеря, обезвоживание при ожоге, холере), падение сердечной деятельности; чрезмерное увеличение емкости сосудистого русла вследствие нарушения вазомоторной регуляции, пареза сосудов, недостаточности катехоламинов, глюкокортикоидов, что ведет к нарушению сосудистого тонуса; нарушения микроциркуляции, повышение вязкости крови и др., факторы, препятствующие продвижению крови через капилляры. Комбинация многих факторов наблюдается при шоке, острой сердечно-сосудистой недостаточности.

При циркуляторной гипоксии снижается скорость транспорта кислорода артериальной, капиллярной кровью при нормальном или сниженном содержании в артериальной крови кислорода, наблюдается снижение этих показателей в венозной крови и, вследствие этого, увеличение венозно-артериального и общего воздушно-венозного градиентов кислорода, высокая артериовенозная разница по кислороду. Исключение: распространенное прекапиллярное шунтирование, когда кровь переходит из артериальной системы в венозную, минуя обменные микрососуды, в результате чего в венозной крови остается много кислорода, хотя ткани при этом испытывают гипоксию.

 

 Кровяная (гемическая) гипоксия

Развивается при уменьшении кислородной емкости крови в двух формах – анемической и при инактивации гемоглобина. Причины: анемия, гидремия; нарушение способности гемоглобина связывать, транспортировать и отдавать тканям кислород при качественных изменениях гемоглобина, например, при отравлении окисью углерода с образованием карбоксигемоглобина. Интоксикация окисью углерода возможна в различных производственных условиях. Окись углерода обладает чрезвычайно высоким сродством гемоглобину и при взаимодействии с простатической группой его молекулы вытесняют кислород и образуют карбоксигемоглобин, лишенный способности к переносу кислорода. При устранении СО из воздуха начинается диссоциация НвСО, которая продолжается в течение многих часов. Качественные изменения гемоглобина происходят и при медгемоглобино образованиях. Реакция образования медгемоглобина протекает внутри эритроцитов при воздействии различных медгемоглобинообразователей (нитраты, нитриты, мышьяковистый водород, некоторые токсины инфекционного и неинфекционного происхождения, ряд лекарственных веществ – фенацетин, антиперин, сульфаниламиды и др.). Медгемоглобин образовывается в результате окисления гемоглобина (перехода железа из закисной формы в окисную). Он лишен основного свойства, позволяющего гемоглобину переносить кислород и выключается из транспортной функции крови, снижая ее кислородную емкость. Процесс образования медгемоглобина имеет обратимый характер: после прекращения действия медгемоглобинообразователей железогема вновь переходит из окисной формы в закисную. Уменьшение сродства гемоглобина кислороду обнаруживается и при ряде генетически обусловленных аномалиях гемоглобина, в частности, при серповидноклеточной анемии и таляссемии. Серповидноклеточная анемия возникает вследствие аномалии структурного гена, что ведет к замене в β-цепях гемоглобина остатка глютаминовой кислоты на остаток валина. В результате появляется аномальный НвS. При таляссемии вследствие дефицита генов-регуляторов нарушается пропорциональность в синтезе α и β-цепей гемоглобина.

При гемической гипоксии вследствие уменьшения кислородной емкости крови либо кислородсвязывающих свойств гемоглобина снижается содержание кислорода в артериальной и венозной крови. Общий воздушно-венозный градиент рО2; альвеолярного воздуха и артериальной крови в пределах нормы. Уменьшается артерио-венозная разница по кислороду.

 

 Тканевая гипоксия

Различают первичную и вторичную тканевую гипоксию. К первичной тканевой (целлюлярной) гипоксии относят состояния, при которых имеет место первичное поражение аппарата, клеточного дыхания.

а) Гипоксия при нарушении способности клеток поглощать кислород из крови.

Утилизация кислорода тканями может затрудняться в результате 1) угнетения биологического окисления различными ингибиторами, например, отравление цианидами, которые блокируют цитохромоксидазу и подавляют потребление кислорода клетками. Так же действуют ионы сульфида и актиномицин А, передозировка барбитуратов, некоторых антибиотиков, избыток водородных ионов, 0В (льюисит); 2) нарушения синтеза дыхательных ферментов при дефиците некоторых витаминов (тиамина, рибофлавина, пантотеновой кислоты и др.); 3) повреждения мембранных структур клетки, что может быть связано с активацией процессов свободно-радикального окисления под воздействием ионизирующих излучений, повышенного давления кислорода, дефиците токоферола, естественных антиоксидантов; перегревания, интоксикации, инфекции, а также при уремии, кахексии и др.

б) Гипоксия разобщения.

При резко выраженное разобщении процессов окисления и фосфорилирования в дыхательной цепи (действие динитрофенола, грамицидина, микробных токсинов, гормонов щитовидной железы и др.) потребление тканями кислорода может возрастать, но значительное увеличение доли энергии, рассеиваемой в виде тепла, приводит к энергетическому “обесцениванию” тканевого дыхания. Возникает относительная недостаточность биологического окисления, при которой, несмотря на высокую интенсивность функционирования дыхательной цепи, ресинтез макроэргических соединений не покрывает потребности тканей, и они находятся в состоянии гипоксии.

Вторичная тканевая гипоксия может развиться при всех других видах гипоксии, при ухудшении массопереноса кислорода в результате нарушения микроциркуляции, изменения условий для диффузии кислорода из крови капилляров в митохондрии (увеличение радиуса диффузии, замедление кровотока, уплотнений капиллярных и клеточных мембран, межклеточного вещества, скопления жидкости и др.). При этом в результате несоответствия между скоростью доставки кислорода и потребностью в нем клеток напряжение кислорода в тканях опускается ниже критического уровня. Вследствие этого активность дыхательных ферментов снижается, окислительные реакции угнетаются, скорость потребления кислорода падает, уменьшается образование макроэргов, накапливаются недоокисленые продукты, и начинают использоваться анаэробные источники энергии.

При тканевой гипоксии напряжение, насыщение и содержание кислорода в артериальной крови могут до известного предела оставаться нормальными, а в венозной крови значительно превышают нормальные величины; уменьшается артерио-венозная разница по кислороду. При гипоксии разобщения могут складываться другие соотношения.

 Субстратная гипоксия.

Развивается в тех случаях, когда при нормальной доставке кислорода, нарушенном состоянии мембран и ферментных систем возникает первичный дефицит субстратов, приводящий к нарушению всех звеньев биологического окисления. В большинстве случаев такая гипоксия связана с дефицитом в клетках глюкозы, например, при расстройствах углеводного обмена (сахарный диабет и др.), а также при дефиците других субстратов (жирных кислот в миокарде), тяжелом голодании.

 

 Перегрузочная гипоксия (“гипоксия нагрузки”)

Возникает при напряженной деятельности органа или ткани, когда функциональные резервы систем транспорта  и утилизации кислорода при отсутствии в них патологических изменений оказываются недостаточными для обеспечения резко увеличенной потребности в кислороде. Так, при чрезмерной мышечной работе возникает гипоксия скелетных мышц, перераспределение кровотока, гипоксия других тканей, развитие общей гипоксии; при перегрузке сердца развивается относительная коронарная недостаточность, локальная гипоксия сердца, вторичная общая циркуляторная гипоксия. Для перегрузочной гипоксии характерно образование кислородного долга при увеличении скорости доставки и потребления кислорода и скорости продукции и выведения углекислоты, венозная гипоксемия, гиперкапния, изменения кислотно-основного состояния.

 Смешанная гипоксия

Гипоксия любого типа, достигнув определенной степени, неизбежно вызывает нарушения функции различных органов и систем, участвующих в обеспечении доставки кислорода и его утилизации в организме. Сочетания различных типов гипоксии наблюдается, в частности, при шоке, отравлении БОВ, заболеваниях сердца, коме и др.

Защитные эффекты адаптации к гипоксии

Развивающиеся при адаптации к гипоксии увеличение мощности систем транспорта кислорода и ресинтеза АТФ – повышает способность людей и животных адаптироваться к другим факторам окружающей среды, например, к физическим нагрузкам. У адаптированных к гипоксии животных установлено увеличение степени сохранения временных связей и ускорение превращения кратковременной памяти в долговременную, стабильную. Это изменение функций мозга – результат активации синтеза нуклеиновых кислот и белков в нейронах и глиальных клетках коры головного мозга адаптированных животных.

При адаптации к гипоксии повышается неспецифическая резистентность организма, легче протекают повреждения системы кровообращения, крови, мозга. Адаптация к гипоксии используется для профилактики и терапии заболеваний, содержащих гипоксический компонент – недостаточности сердца при экспериментальных пороках, некрозах сердца, последствий кровопотери, профилактики нарушения поведения животных в конфликтной ситуации, эпилептиформных судорогах и др.

error: Материал көшіруге болмайды!